Correcting Sorted Sequences in ^aSingle Hop Radio Network

Marcin Kik

Wrocław University of Technology

Poland

FCT 2009

Correcting Sorted Sequences in ^a Single Hop Radio Network – p. ¹

Radio network:

 n stations s_0, \ldots, s_{n-1} messages $_{\rm 1}$ communicating by radio

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- ${\sf single\ channel}$ (in a single slot at most one message)

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- ${\sf single\ channel}$ (in a single slot at most one message)
- single message contains either ^a single key or ^a $\lceil\lg_2n\rceil$ -bit integer

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- ${\sf single\ channel}$ (in a single slot at most one message)
- single message contains either ^a single key or ^a $\lceil\lg_2n\rceil$ -bit integer
- broadcasting/listening in ^a single time slot requires ^aunit of energetic cost

- n stations s_0, \ldots, s_{n-1} $_{\rm 1}$ communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- ${\sf single\ channel}$ (in a single slot at most one message)
- single message contains either ^a single key or ^a $\lceil\lg_2n\rceil$ -bit integer
- broadcasting/listening in ^a single time slot requires ^aunit of energetic cost
- memory of single station limited (constant number of variables storing either keys or $\lceil\lg_2n\rceil$ -bit integers).

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

 Energetic cost of the algorithm: the maximal energy dissipated by ^a single station.

Informally: We want to sort a sequence that is *almost* sorted.

- *Informally:* We want to sort a sequence that is *almost* sorted.
- A k -disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.

- *Informally:* We want to sort a sequence that is *almost* sorted.
- A k -disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one *old key* and one *new key* (either equal to the old one or *changed*).

- *Informally:* We want to sort a sequence that is *almost* sorted.
- A k -disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one *old key* and one *new key* (either equal to the old one or *changed*).
- The sequence of the *old keys is sorted* (i.e. each station knows the position of its old key in the sorted sequence).

- *Informally:* We want to sort a sequence that is *almost* sorted.
- A k -disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one *old key* and one *new key* (either equal to the old one or *changed*).
- The sequence of the *old keys is sorted* (i.e. each station knows the position of its old key in the sorted sequence).
- We want to sort the sequence of the *new keys* (i.e. each station has to learn the index of its new key in the sorted sequence of the new keys).

Sorting algorithms for this model

Let n be the number of keys (stations).

Sorting algorithms for this model

Let n be the number of keys (stations).

- Singh, Prasanna (PERCOM 2003) sorting based on energetically balanced implementation of selectionalgorithm.
	- Time: $O(n \log n)$
	- Energy: $O(\log n)$

Sorting algorithms for this model

Let n be the number of keys (stations).

- Singh, Prasanna (PERCOM 2003) sorting based on energetically balanced implementation of selectionalgorithm.
	- Time: $O(n \log n)$
	- Energy: $O(\log n)$
- (SOFSEM 2006) simple sorting based on (moderately)balanced merging
	- Time: $O(n \log n)$
	- Energy: $O(\log^2$ $^{2}\,n)$
	- low constants under O

Let n be the number of stations and let k be the number of actually changed keys.

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n - k + 1) \rceil + 6 \lceil \lg k \rceil) - 2$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n - k + 1) \rceil + 6 \lceil \lg k \rceil) - 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2 \lfloor n/k \rfloor} \rceil + 4 \cdot \lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2 \lfloor n/k \rfloor} \rceil + 4 \cdot \lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10$ For example: If k is $O(n/\log^2 n)$ then energetic cost is $O(1)$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2 \lfloor n/k \rfloor} \rceil + 4 \cdot \lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10$ For example: If k is $O(n/\log^2 n)$ then energetic cost is $O(1)$
- if $\frac{(\lceil \lg k \rceil +1)(\lceil \lg k \rceil +2)}{2}$ $\frac{p(\lfloor \lg \kappa \rfloor + 2)}{2} + \lceil \lg k \rceil \leq \lfloor n/k \rfloor$ then the energetic $\bf cost$ is bounded by $14.$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k -disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2 \lfloor n/k \rfloor} \rceil + 4 \cdot \lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10$ For example: If k is $O(n/\log^2 n)$ then energetic cost is $O(1)$
- if $\frac{(\lceil \lg k \rceil +1)(\lceil \lg k \rceil +2)}{2}$ $\frac{p(\lfloor \lg \kappa \rfloor + 2)}{2} + \lceil \lg k \rceil \leq \lfloor n/k \rfloor$ then the energetic $\bf cost$ is bounded by $14.$

 k is not fixed nor limited. The algorithm adapts itself to arbitrary $k \leq n$.

1. split-and-count:

- 1. split-and-count:
	- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).

- 1. split-and-count:
	- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
	- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).

1. split-and-count:

- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).
- Each station learns k the number of changed keys.

1. split-and-count:

- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).
- Each station learns k the number of changed keys.

If k is large fraction of n then apply sorting algorithm and stop, else continue.

- 1. split-and-count:
	- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
	- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).
	- Each station learns k the number of changed keys.
	- If k is large fraction of n then apply sorting algorithm and stop, else continue.
- ${\mathbf 2}.$ assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of thefollowing procedures.

- 1. split-and-count:
	- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
	- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).
	- Each station learns k the number of changed keys.
	- If k is large fraction of n then apply sorting algorithm and stop, else continue.
- ${\mathbf 2}.$ assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of thefollowing procedures.
- ${\bf 3.} \;\; {\tt sort:} \; {\sf Sorting} \; {\sf the} \; b\text{-} {\sf sequence}$

- 1. split-and-count:
	- Each station with unchanged key (a *-key*) learns its position in the (sorted) sequence of the unchanged keys (a -sequence).
	- Each station with changed key ($b\text{-}$ key) learns its position in the (unsorted) sequence of the changed keys (b -s*equence*).
	- Each station learns k the number of changed keys.
	- If k is large fraction of n then apply sorting algorithm and stop, else continue.
- ${\mathbf 2}.$ assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of thefollowing procedures.
- ${\bf 3.} \;\; {\tt sort:} \; {\sf Sorting} \; {\sf the} \; b\text{-} {\sf sequence}$
- ${\sf 4.}$ <code>final-merge: Merging the b -sequence with the a -sequence.</code>

split-and-count

Each station compares its *new* key to its *old* key.

split-and-count

- Each station compares its *new* key to its *old* key.
- For $0\leq t\leq n +1$ s_{t+1} the number of changes in $s_0,\ldots,s_t.$ $\mathit{2},$ in time slot $t,$ the station s_t sends to

split-and-count

- Each station compares its *new* key to its *old* key.
- For $0\leq t\leq n$ s_{t+1} the number of changes in $s_0,\ldots,s_t.$ $\mathit{2},$ in time slot $t,$ the station s_t sends to
- In time slot $n-1$ the station s_{n-1} number of changes k to the remaining stations. $_1$ sends the global
- Each station compares its *new* key to its *old* key.
- For $0\leq t\leq n$ s_{t+1} the number of changes in $s_0,\ldots,s_t.$ $\mathit{2},$ in time slot $t,$ the station s_t sends to
- In time slot $n-1$ the station s_{n-1} number of changes k to the remaining stations. $_1$ sends the global

Time: n

- Each station compares its *new* key to its *old* key.
- For $0\leq t\leq n$ s_{t+1} the number of changes in $s_0,\ldots,s_t.$ $\mathit{2},$ in time slot $t,$ the station s_t sends to
- In time slot $n-1$ the station s_{n-1} number of changes k to the remaining stations. $_1$ sends the global

Time: n

Energetic cost:3

After split-and-count:

After split-and-count:

Each station knows $k.$

After split-and-count:

- Each station knows $k.$
- Each station with *unchanged* key (*owner of this a-key*) knows its position in the (sorted) $a\text{-}\mathbf{sequence}.$

After split-and-count:

- Each station knows $k.$
- Each station with *unchanged* key (*owner of this a-key*) knows its position in the (sorted) $a\text{-}\mathbf{sequence}.$
- Each station with *changed* key (*owner of this* b *-key*) knows its position in the (unsorted) $b\text{-}\textbf{sequence}.$

Let key_i denote the i th $b\text{-}\mathsf{key}$.All stations know k . They are arranged in the following matrix:

For $0\leq t\leq k \cdot$ + key_t to the workers for key_t . $1,$ in time slot $t,$ the owner of key_t sends

- For $0\leq t\leq k$ key_t to the workers for key_t . $1,$ in time slot $t,$ the owner of key_t sends
- For $0\leq i\leq k-$ 1,
	- the *first* worker for key \overline{i}_i becomes the current *r-worker* (rank-worker).
	- the *last* worker for key \overline{i}_i becomes the current *i-worker* (index-worker).

Time: k

Time: k

Energetic cost:2

sort

The $b\text{-}$ sequence is sorted by a (balanced) merge-sort:

```
beginm \leftarrow 1;while mwhile m < k do
merge all pairs of subsequences of length m;m \leftarrow 2 \cdot m;
```
end

merging

To merge two sorted sequences, each key from one sequence has to learn its rank in the other sequence. Then it can compute its index in the merged sequence.

 $\mathsf{procedure}~\mathsf{merge}(\mathit{seq}_1,\mathit{seq}_2)$

begin

```
rank(seq_1, seq_2);\texttt{rank}(seq_2, seq_1);
```
end

Ranking seq_1 in seq_2 :

ranking

Ranking seq_1 in seq_2 :

For each key of seq_i , its current i-worker knows its index in the sorted $seq_i.$

ranking

Ranking seq_1 in seq_2 :

- For each key of seq_i , its current i-worker knows its index in the sorted $seq_i.$
- The sorted sequence seq_2 , permuted by a special permutation (bso), is transmitted by the i-workers of seq_2 . (Each i-worker transmits once.)

ranking

Ranking seq_1 in seq_2 :

- For each key of seq_i , its current i-worker knows its index in the sorted $seq_i.$
- The sorted sequence seq_2 , permuted by a special permutation (bso), is transmitted by the i-workers of seq_2 . (Each i-worker transmits once.)
- During these transmissions, for each key of seq_1 , some its r-workers are used to compute its rank in $seq_2.$ (Each r-worker uses constant energy.)

Let m be the length of seq_2 . The elements of seq_2 are
arranged in the following tree: arranged in the following tree:

 x -indexing – in-order (indexes of seq $_2)$

- x -indexing in-order (indexes of seq $_2)$
- \displaystyle{y} -indexing heap-order (transmissions order)

- x -indexing in-order (indexes of seq $_2)$
- \displaystyle{y} -indexing heap-order (transmissions order)
- bso_m for a node with $x\text{-}\mathsf{index}\;x, \, y=$ ϵ_m – an ("easily computable") permutation:
a pode with ϵ_m index ϵ_m at a base (cn) is $= bso$ $_m(x)$ is its y -index.

- x -indexing in-order (indexes of seq $_2)$
- \displaystyle{y} -indexing heap-order (transmissions order)
- bso_m for a node with $x\text{-}\mathsf{index}\;x, \, y=$ ϵ_m – an ("easily computable") permutation:
a pode with ϵ_m index ϵ_m at a base (cn) is $= bso$ $_m(x)$ is its y -index.
- the ith element of the sorted seq_2 t th, where $t=\,$ $_{\rm 2}$ is transmitted as the $= bso$ $_m(i).$

 seq_2 $\rm _2$ is transmitted level by level.

- seq_2 $\rm _2$ is transmitted level by level.
- For each key of $seq_1,$ its current r-worker:

- seq_2 $\rm _2$ is transmitted level by level.
- For each key of $seq_1,$ its current r-worker:
	- . knows its rank in the previously transmitted levels,

- seq_2 $\rm _2$ is transmitted level by level.
- For each key of $seq_1,$ its current r-worker:
	- . knows its rank in the previously transmitted levels,
	- listens *only once* in the next level to compute its rank in the subsequence of seq_2 $\rm _2$ enhanced by this level,

- seq_2 $\rm _2$ is transmitted level by level.
- For each key of $seq_1,$ its current r-worker:
	- . knows its rank in the previously transmitted levels,
	- listens *only once* in the next level to compute its rank in the subsequence of seq_2 $\rm _2$ enhanced by this level,
- between the the levels, the current r-workers of seq_1 transfer the ranks to the next r-workers.

After the last level, each r-worker of seq_1 to the i-worker which computes the index of its key in $_1$ sends the rank the sequence merged from seq_1 and seq_2 . (Procedur $_1$ and seq_2 . (Procedure send-ranks-to-indexes.)

Phase 1: Computing output index for each b **-key:**

 $\texttt{rank}(b\text{-}\texttt{sequence},\ a\text{-}\texttt{sequence})$ (also blanced!)

Phase 1: Computing output index for each b **-key:**

- $\texttt{rank}(b\text{-}\texttt{sequence},\ a\text{-}\texttt{sequence})\quad$ (also blanced!)
- **Each owner of** b **-key** *overhears* **in** send-ranks-to-indexes **the** rank of this $b\text{-}\mathsf{key}$ in the $a\text{-}\mathsf{sequence}.$

Phase 1: Computing output index for each b **-key:**

- $\texttt{rank}(b\text{-}\texttt{sequence},\ a\text{-}\texttt{sequence})\quad$ (also blanced!)
- **Each owner of** b **-key** *overhears* **in** send-ranks-to-indexes **the** rank of this $b\text{-}\mathsf{key}$ in the $a\text{-}\mathsf{sequence}.$
- Each owner of $b\text{-}\mathsf{key}$ is informed by its i-worker about the final index of this key in the *sorted sequence of all keys*. (Thus, it can also compute its index in the sorted b -sequence.)

Phase 1: Computing output index for each b **-key:**

- $\texttt{rank}(b\text{-}\texttt{sequence},\ a\text{-}\texttt{sequence})\quad$ (also blanced!)
- **Each owner of** b **-key** *overhears* **in** send-ranks-to-indexes **the** rank of this $b\text{-}\mathsf{key}$ in the $a\text{-}\mathsf{sequence}.$
- Each owner of $b\text{-}\mathsf{key}$ is informed by its i-worker about the final index of this key in the *sorted sequence of all keys*. (Thus, it can also compute its index in the sorted b -sequence.)

Now each owner of $b\text{-}\mathsf{key}$ knows:

- **•** its index in the sorted output
- its index in the sorted b -sequence
- its rank in the $a\text{-}\mathbf{s}$ equence
Phase 2: Computing output index for each a -key:

In the sorted b -sequence, each $b\text{-}\mathsf{key}$ informs its predecessor about its rank in the a -sequence. (Each *last* b -key with given rank becomes aware of this fact.)

Phase 2: Computing output index for each a -key:

- In the sorted b -sequence, each $b\text{-}\mathsf{key}$ informs its predecessor about its rank in the a -sequence. (Each *last* b -key with given rank becomes aware of this fact.)
- For $0\leq t\leq n-k$ b -sequence with the rank t (if exists) informs the t th a -key from $1,$ in time slot $t,$ the last $b\text{-}\mathsf{key}$ from the sorted \emph{a} -sequence about its index in the sorted \emph{b} -sequence. (a *displacement* of this a -key).

Phase 2: Computing output index for each a -key:

- In the sorted b -sequence, each $b\text{-}\mathsf{key}$ informs its predecessor about its rank in the a -sequence. (Each *last* b -key with given rank becomes aware of this fact.)
- For $0\leq t\leq n-k$ b -sequence with the rank t (if exists) informs the t th a -key from $1,$ in time slot $t,$ the last $b\text{-}\mathsf{key}$ from the sorted \emph{a} -sequence about its index in the sorted \emph{b} -sequence. (a *displacement* of this a -key).
- For $0\leq t\leq n-k$ receive its displacement from the $b\text{-}$ sequence, receives the $2,$ in time slot $t,$ the $(t+1)$ st $a\hbox{-}\mathsf{key}$ that did not displacement from its predecessor in $a\text{-}\mathbf{sequence}.$

Phase 2: Computing output index for each a -key:

- In the sorted b -sequence, each $b\text{-}\mathsf{key}$ informs its predecessor about its rank in the a -sequence. (Each *last* b -key with given rank becomes aware of this fact.)
- For $0\leq t\leq n-k$ b -sequence with the rank t (if exists) informs the t th a -key from $1,$ in time slot $t,$ the last $b\text{-}\mathsf{key}$ from the sorted \emph{a} -sequence about its index in the sorted \emph{b} -sequence. (a *displacement* of this a -key).
- For $0\leq t\leq n-k$ receive its displacement from the $b\text{-}$ sequence, receives the $2,$ in time slot $t,$ the $(t+1)$ st $a\hbox{-}\mathsf{key}$ that did not displacement from its predecessor in $a\text{-}\mathbf{sequence}.$
- Each a -key adds its displacement to its index in $a\text{-}sequence to get its$ index in the sorted sequence of all keys.

final-merge **– complexity**

Time: $O(n)$

 \textbf{E} **rergetic cost:** $O(1) + \textbf{the cost of rank}$

 $\mathsf{After~each~merge}(\mathit{seq}_1, \mathit{seq}_2)$, for each key of seq_1 and $\mathit{seq}_2,$ the task of i-worker is transfered to the previous (modulo $\lfloor n/k \rfloor$) w<code>Orker.(For</code> each key – at most $\lceil \lg k \rceil$ such transfers.)

- $\mathsf{After~each~merge}(\mathit{seq}_1, \mathit{seq}_2)$, for each key of seq_1 and $\mathit{seq}_2,$ the task of i-worker is transfered to the previous (modulo $\lfloor n/k \rfloor$) w<code>Orker.(For</code> each key – at most $\lceil \lg k \rceil$ such transfers.)
- After each level of $rank(seq_1,seq_2)$, for each key of seq_1 , the task of r-worker is transfered to the next (modulo $\lfloor n/k \rfloor)$ WO<code>rker.</code>(For each key – at most $\frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2}$ such transfers.)

- $\mathsf{After~each~merge}(\mathit{seq}_1, \mathit{seq}_2)$, for each key of seq_1 and $\mathit{seq}_2,$ the task of i-worker is transfered to the previous (modulo $\lfloor n/k \rfloor$) w<code>Orker.(For</code> each key – at most $\lceil \lg k \rceil$ such transfers.)
- After each level of $rank(seq_1,seq_2)$, for each key of seq_1 , the task of r-worker is transfered to the next (modulo $\lfloor n/k \rfloor)$ WO<code>rker.</code>(For each key – at most $\frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2}$ such transfers.)
- . The energetic cost of each transfer is constant.

Final remarks

Robustness to interferences: How to correct sequencesin the model, where each message is received withprobability $p < 1?$

Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Final remarks

Robustness to interferences: How to correct sequencesin the model, where each message is received withprobability $p < 1?$

Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Simulation in Java available at:

http://www.im.pwr.wroc.pl/˜kik/CorrectionRN.java

THE END

THANK YOU!