
Correcting Sorted Sequences in a
Single Hop Radio Network

Marcin Kik

Poland

FCT 2009

Correcting Sorted Sequences in a Single Hop Radio Network – p. 1

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

synchronized (time is divided into slots)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

synchronized (time is divided into slots)

single channel (in a single slot at most one message)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

synchronized (time is divided into slots)

single channel (in a single slot at most one message)

single message contains either a single key or a
⌈lg2 n⌉-bit integer

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

synchronized (time is divided into slots)

single channel (in a single slot at most one message)

single message contains either a single key or a
⌈lg2 n⌉-bit integer

broadcasting/listening in a single time slot requires a
unit of energetic cost

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Model of computation

Radio network:

n stations s0, . . . , sn−1 communicating by radio
messages

single-hop (each station within the range of any other station)

synchronized (time is divided into slots)

single channel (in a single slot at most one message)

single message contains either a single key or a
⌈lg2 n⌉-bit integer

broadcasting/listening in a single time slot requires a
unit of energetic cost

memory of single station limited (constant number of
variables storing either keys or ⌈lg2 n⌉-bit integers).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 2

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

Correcting Sorted Sequences in a Single Hop Radio Network – p. 3

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

Energetic cost of the algorithm: the maximal energy dissipated
by a single station.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 3

Statement of the problem

Informally: We want to sort a sequence that is almost
sorted.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 4

Statement of the problem

Informally: We want to sort a sequence that is almost
sorted.

A k-disturbed sequence – a sequence obtained from a
sorted sequence by changing at most k keys.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 4

Statement of the problem

Informally: We want to sort a sequence that is almost
sorted.

A k-disturbed sequence – a sequence obtained from a
sorted sequence by changing at most k keys.

Each station stores one old key and one new key (either
equal to the old one or changed).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 4

Statement of the problem

Informally: We want to sort a sequence that is almost
sorted.

A k-disturbed sequence – a sequence obtained from a
sorted sequence by changing at most k keys.

Each station stores one old key and one new key (either
equal to the old one or changed).

The sequence of the old keys is sorted (i.e. each station
knows the position of its old key in the sorted sequence).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 4

Statement of the problem

Informally: We want to sort a sequence that is almost
sorted.

A k-disturbed sequence – a sequence obtained from a
sorted sequence by changing at most k keys.

Each station stores one old key and one new key (either
equal to the old one or changed).

The sequence of the old keys is sorted (i.e. each station
knows the position of its old key in the sorted sequence).

We want to sort the sequence of the new keys (i.e. each
station has to learn the index of its new key in the sorted sequence of
the new keys).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 4

Sorting algorithms for this model

Let n be the number of keys (stations).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 5

Sorting algorithms for this model

Let n be the number of keys (stations).

Singh, Prasanna (PERCOM 2003) sorting based on
energetically balanced implementation of selection
algorithm.

Time: O(n log n)

Energy: O(log n)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 5

Sorting algorithms for this model

Let n be the number of keys (stations).

Singh, Prasanna (PERCOM 2003) sorting based on
energetically balanced implementation of selection
algorithm.

Time: O(n log n)

Energy: O(log n)

(SOFSEM 2006) simple sorting based on (moderately)
balanced merging

Time: O(n log n)

Energy: O(log2 n)

low constants under O

Correcting Sorted Sequences in a Single Hop Radio Network – p. 5

Our results

Let n be the number of stations and let k be the number of
actually changed keys.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2
For example: If k is o(n/ log n) then time is o(n log n)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2
For example: If k is o(n/ log n) then time is o(n log n)

with energetic cost: 3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉+4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉+10

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2
For example: If k is o(n/ log n) then time is o(n log n)

with energetic cost: 3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉+4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉+10

For example: If k is O(n/ log2 n) then energetic cost is O(1)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2
For example: If k is o(n/ log n) then time is o(n log n)

with energetic cost: 3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉+4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉+10

For example: If k is O(n/ log2 n) then energetic cost is O(1)

if (⌈lg k⌉+1)(⌈lg k⌉+2)
2 + ⌈lg k⌉ ≤ ⌊n/k⌋ then the energetic

cost is bounded by 14.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

Our results

Let n be the number of stations and let k be the number of
actually changed keys.
We can sort a k-disturbed sequence:

in time: 4n + k · (⌈lg k⌉2 + ⌈lg(n− k + 1)⌉+ 6⌈lg k⌉)− 2
For example: If k is o(n/ log n) then time is o(n log n)

with energetic cost: 3 · ⌈ (⌈lg k⌉+1)(⌈lg k⌉+2)
2⌊n/k⌋ ⌉+4 · ⌈ ⌈lg k⌉

⌊n/k⌋⌉+10

For example: If k is O(n/ log2 n) then energetic cost is O(1)

if (⌈lg k⌉+1)(⌈lg k⌉+2)
2 + ⌈lg k⌉ ≤ ⌊n/k⌋ then the energetic

cost is bounded by 14.

k is not fixed nor limited. The algorithm adapts itself to
arbitrary k ≤ n.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 6

outline of the algorithm

1. split-and-count :

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Each station learns k – the number of changed keys.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Each station learns k – the number of changed keys.

If k is large fraction of n then apply sorting algorithm
and stop, else continue.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Each station learns k – the number of changed keys.

If k is large fraction of n then apply sorting algorithm
and stop, else continue.

2. assign-workers : Each changed key is assigned ⌊n/k⌋

stations, that will balance among themselves the energetic cost of the
following procedures.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Each station learns k – the number of changed keys.

If k is large fraction of n then apply sorting algorithm
and stop, else continue.

2. assign-workers : Each changed key is assigned ⌊n/k⌋

stations, that will balance among themselves the energetic cost of the
following procedures.

3. sort : Sorting the b-sequence

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

outline of the algorithm

1. split-and-count :
Each station with unchanged key (a-key) learns its position in the
(sorted) sequence of the unchanged keys (a-sequence).

Each station with changed key (b-key) learns its position in the
(unsorted) sequence of the changed keys (b-sequence).

Each station learns k – the number of changed keys.

If k is large fraction of n then apply sorting algorithm
and stop, else continue.

2. assign-workers : Each changed key is assigned ⌊n/k⌋

stations, that will balance among themselves the energetic cost of the
following procedures.

3. sort : Sorting the b-sequence

4. final-merge : Merging the b-sequence with the a-sequence.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 7

split-and-count

Each station compares its new key to its old key.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 8

split-and-count

Each station compares its new key to its old key.

For 0 ≤ t ≤ n− 2, in time slot t, the station st sends to
st+1 the number of changes in s0, . . . , st.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 8

split-and-count

Each station compares its new key to its old key.

For 0 ≤ t ≤ n− 2, in time slot t, the station st sends to
st+1 the number of changes in s0, . . . , st.

In time slot n− 1 the station sn−1 sends the global
number of changes k to the remaining stations.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 8

split-and-count

Each station compares its new key to its old key.

For 0 ≤ t ≤ n− 2, in time slot t, the station st sends to
st+1 the number of changes in s0, . . . , st.

In time slot n− 1 the station sn−1 sends the global
number of changes k to the remaining stations.

Time: n

Correcting Sorted Sequences in a Single Hop Radio Network – p. 8

split-and-count

Each station compares its new key to its old key.

For 0 ≤ t ≤ n− 2, in time slot t, the station st sends to
st+1 the number of changes in s0, . . . , st.

In time slot n− 1 the station sn−1 sends the global
number of changes k to the remaining stations.

Time: n

Energetic cost: 3

Correcting Sorted Sequences in a Single Hop Radio Network – p. 8

split-and-count

old key
new key
changed

10
10

0

station 0

0

0

. . .

k

station 1 station 2 station n−1

20
25
1

1 30
30

90
11
1

1

Correcting Sorted Sequences in a Single Hop Radio Network – p. 9

split-and-count

1

. . .

k

station 1 station 2 station n−1

25
1 30

11
1a−sequence

b−sequence
0

station 0

10

0 0 k−1b−idxa−idx/

Correcting Sorted Sequences in a Single Hop Radio Network – p. 10

split-and-count

After split-and-count :

Correcting Sorted Sequences in a Single Hop Radio Network – p. 11

split-and-count

After split-and-count :

Each station knows k.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 11

split-and-count

After split-and-count :

Each station knows k.

Each station with unchanged key (owner of this a-key)
knows its position in the (sorted) a-sequence.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 11

split-and-count

After split-and-count :

Each station knows k.

Each station with unchanged key (owner of this a-key)
knows its position in the (sorted) a-sequence.

Each station with changed key (owner of this b-key)
knows its position in the (unsorted) b-sequence.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 11

assign-workers

Let keyi denote the ith b-key. All stations know k. They are
arranged in the following matrix:

n/k

k

. . .

. . .

. . .

.

.

.

workers for key

workers for key

workers for key

0

1

k−1

Correcting Sorted Sequences in a Single Hop Radio Network – p. 12

assign-workers

For 0 ≤ t ≤ k − 1, in time slot t, the owner of keyt sends
keyt to the workers for keyt.

i−worker

Correcting Sorted Sequences in a Single Hop Radio Network – p. 13

assign-workers

For 0 ≤ t ≤ k − 1, in time slot t, the owner of keyt sends
keyt to the workers for keyt.

For 0 ≤ i ≤ k − 1,
the first worker for keyi becomes the current r-worker
(rank-worker).
the last worker for keyi becomes the current i-worker
(index-worker).

. . .

r−worker

i−worker

workers for key
i

Correcting Sorted Sequences in a Single Hop Radio Network – p. 13

assign-workers

Time: k

Correcting Sorted Sequences in a Single Hop Radio Network – p. 14

assign-workers

Time: k

Energetic cost: 2

Correcting Sorted Sequences in a Single Hop Radio Network – p. 14

sort

The b-sequence is sorted by a (balanced) merge-sort:

begin
m← 1;
while m < k do

merge all pairs of subsequences of length m;
m← 2 ·m;

end

Correcting Sorted Sequences in a Single Hop Radio Network – p. 15

merging

To merge two sorted sequences, each key from one
sequence has to learn its rank in the other sequence.
Then it can compute its index in the merged sequence.

procedure merge (seq1, seq2)

begin
rank (seq1, seq2);
rank (seq2, seq1);

end

Correcting Sorted Sequences in a Single Hop Radio Network – p. 16

ranking

Ranking seq1 in seq2:

Correcting Sorted Sequences in a Single Hop Radio Network – p. 17

ranking

Ranking seq1 in seq2:

For each key of seqi, its current i-worker knows its index
in the sorted seqi.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 17

ranking

Ranking seq1 in seq2:

For each key of seqi, its current i-worker knows its index
in the sorted seqi.

The sorted sequence seq2, permuted by a special
permutation (bso), is transmitted by the i-workers of seq2.
(Each i-worker transmits once.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 17

ranking

Ranking seq1 in seq2:

For each key of seqi, its current i-worker knows its index
in the sorted seqi.

The sorted sequence seq2, permuted by a special
permutation (bso), is transmitted by the i-workers of seq2.
(Each i-worker transmits once.)

During these transmissions, for each key of seq1, some
its r-workers are used to compute its rank in seq2.
(Each r-worker uses constant energy.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 17

Ranking: Binary tree Tm, bso

Let m be the length of seq2. The elements of seq2 are
arranged in the following tree:

0

1

3

2 4

5

3

1

4

0

2

5

Correcting Sorted Sequences in a Single Hop Radio Network – p. 18

Ranking: Binary tree Tm, bso

Let m be the length of seq2. The elements of seq2 are
arranged in the following tree:

0

1

3

2 4

5

3

1

4

0

2

5

x-indexing – in-order (indexes of seq2)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 18

Ranking: Binary tree Tm, bso

Let m be the length of seq2. The elements of seq2 are
arranged in the following tree:

0

1

3

2 4

5

3

1

4

0

2

5

x-indexing – in-order (indexes of seq2)

y-indexing – heap-order (transmissions order)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 18

Ranking: Binary tree Tm, bso

Let m be the length of seq2. The elements of seq2 are
arranged in the following tree:

0

1

3

2 4

5

3

1

4

0

2

5

x-indexing – in-order (indexes of seq2)

y-indexing – heap-order (transmissions order)

bsom – an (“easily computable”) permutation:
for a node with x-index x, y = bsom(x) is its y-index.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 18

Ranking: Binary tree Tm, bso

Let m be the length of seq2. The elements of seq2 are
arranged in the following tree:

0

1

3

2 4

5

3

1

4

0

2

5

x-indexing – in-order (indexes of seq2)

y-indexing – heap-order (transmissions order)

bsom – an (“easily computable”) permutation:
for a node with x-index x, y = bsom(x) is its y-index.

the ith element of the sorted seq2 is transmitted as the
tth, where t = bsom(i).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 18

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

seq2 is transmitted level by level.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

seq2 is transmitted level by level.

For each key of seq1, its current r-worker:

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

seq2 is transmitted level by level.

For each key of seq1, its current r-worker:
knows its rank in the previously transmitted levels,

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

seq2 is transmitted level by level.

For each key of seq1, its current r-worker:
knows its rank in the previously transmitted levels,
listens only once in the next level to compute its rank
in the subsequence of seq2 enhanced by this level,

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

seq2 is transmitted level by level.

For each key of seq1, its current r-worker:
knows its rank in the previously transmitted levels,
listens only once in the next level to compute its rank
in the subsequence of seq2 enhanced by this level,

between the the levels, the current r-workers of seq1

transfer the ranks to the next r-workers.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 19

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

Correcting Sorted Sequences in a Single Hop Radio Network – p. 20

Ranking: Layers of Tm

0 1

0 2 3

1 4

1

0 3 5 62

ranks

level 0

level 1

level 2 0

1

3

2 4

5

After the last level, each r-worker of seq1 sends the rank
to the i-worker which computes the index of its key in
the sequence merged from seq1 and seq2. (Procedure
send-ranks-to-indexes .)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 20

final-merge

Phase 1: Computing output index for each b-key:

rank (b-sequence, a-sequence) (also blanced!)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 21

final-merge

Phase 1: Computing output index for each b-key:

rank (b-sequence, a-sequence) (also blanced!)

Each owner of b-key overhears in send-ranks-to-indexes the
rank of this b-key in the a-sequence.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 21

final-merge

Phase 1: Computing output index for each b-key:

rank (b-sequence, a-sequence) (also blanced!)

Each owner of b-key overhears in send-ranks-to-indexes the
rank of this b-key in the a-sequence.

Each owner of b-key is informed by its i-worker about the final index
of this key in the sorted sequence of all keys. (Thus, it can also
compute its index in the sorted b-sequence.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 21

final-merge

Phase 1: Computing output index for each b-key:

rank (b-sequence, a-sequence) (also blanced!)

Each owner of b-key overhears in send-ranks-to-indexes the
rank of this b-key in the a-sequence.

Each owner of b-key is informed by its i-worker about the final index
of this key in the sorted sequence of all keys. (Thus, it can also
compute its index in the sorted b-sequence.)

Now each owner of b-key knows:

its index in the sorted output

its index in the sorted b-sequence

its rank in the a-sequence

Correcting Sorted Sequences in a Single Hop Radio Network – p. 21

final-merge

Phase 2: Computing output index for each a-key:

In the sorted b-sequence, each b-key informs its predecessor about
its rank in the a-sequence. (Each last b-key with given rank becomes
aware of this fact.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 22

final-merge

Phase 2: Computing output index for each a-key:

In the sorted b-sequence, each b-key informs its predecessor about
its rank in the a-sequence. (Each last b-key with given rank becomes
aware of this fact.)

For 0 ≤ t ≤ n− k − 1, in time slot t, the last b-key from the sorted
b-sequence with the rank t (if exists) informs the tth a-key from
a-sequence about its index in the sorted b-sequence. (a
displacement of this a-key).

Correcting Sorted Sequences in a Single Hop Radio Network – p. 22

final-merge

Phase 2: Computing output index for each a-key:

In the sorted b-sequence, each b-key informs its predecessor about
its rank in the a-sequence. (Each last b-key with given rank becomes
aware of this fact.)

For 0 ≤ t ≤ n− k − 1, in time slot t, the last b-key from the sorted
b-sequence with the rank t (if exists) informs the tth a-key from
a-sequence about its index in the sorted b-sequence. (a
displacement of this a-key).

For 0 ≤ t ≤ n− k − 2, in time slot t, the (t + 1)st a-key that did not
receive its displacement from the b-sequence, receives the
displacement from its predecessor in a-sequence.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 22

final-merge

Phase 2: Computing output index for each a-key:

In the sorted b-sequence, each b-key informs its predecessor about
its rank in the a-sequence. (Each last b-key with given rank becomes
aware of this fact.)

For 0 ≤ t ≤ n− k − 1, in time slot t, the last b-key from the sorted
b-sequence with the rank t (if exists) informs the tth a-key from
a-sequence about its index in the sorted b-sequence. (a
displacement of this a-key).

For 0 ≤ t ≤ n− k − 2, in time slot t, the (t + 1)st a-key that did not
receive its displacement from the b-sequence, receives the
displacement from its predecessor in a-sequence.

Each a-key adds its displacement to its index in a-sequence to get its
index in the sorted sequence of all keys.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 22

final-merge – complexity

Time: O(n)

Energetic cost: O(1) + the cost of rank

Correcting Sorted Sequences in a Single Hop Radio Network – p. 23

Balancing the energy insort and final-merge

. . .

r−worker

i−worker

workers for key
i

Correcting Sorted Sequences in a Single Hop Radio Network – p. 24

Balancing the energy insort and final-merge

. . .

r−worker

i−worker

workers for key
i

After each merge (seq1, seq2) , for each key of seq1 and seq2,

the task of i-worker is transfered to the previous (modulo
⌊n/k⌋) worker.(For each key – at most ⌈lg k⌉ such transfers.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 24

Balancing the energy insort and final-merge

. . .

r−worker

i−worker

workers for key
i

After each merge (seq1, seq2) , for each key of seq1 and seq2,

the task of i-worker is transfered to the previous (modulo
⌊n/k⌋) worker.(For each key – at most ⌈lg k⌉ such transfers.)

After each level of rank (seq1, seq2), for each key of seq1, the
task of r-worker is transfered to the next (modulo ⌊n/k⌋)
worker.(For each key – at most (⌈lg k⌉+1)(⌈lg k⌉+2)

2 such transfers.)

Correcting Sorted Sequences in a Single Hop Radio Network – p. 24

Balancing the energy insort and final-merge

. . .

r−worker

i−worker

workers for key
i

After each merge (seq1, seq2) , for each key of seq1 and seq2,

the task of i-worker is transfered to the previous (modulo
⌊n/k⌋) worker.(For each key – at most ⌈lg k⌉ such transfers.)

After each level of rank (seq1, seq2), for each key of seq1, the
task of r-worker is transfered to the next (modulo ⌊n/k⌋)
worker.(For each key – at most (⌈lg k⌉+1)(⌈lg k⌉+2)

2 such transfers.)

The energetic cost of each transfer is constant.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 24

Final remarks

Robustness to interferences: How to correct sequences
in the model, where each message is received with
probability p < 1?
Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Correcting Sorted Sequences in a Single Hop Radio Network – p. 25

Final remarks

Robustness to interferences: How to correct sequences
in the model, where each message is received with
probability p < 1?
Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Simulation in Java available at:
http://www.im.pwr.wroc.pl/˜kik/CorrectionRN.java

Correcting Sorted Sequences in a Single Hop Radio Network – p. 25

THE END

THANK YOU!

Correcting Sorted Sequences in a Single Hop Radio Network – p. 26

	Model of computation
	Model of computation
	Model of computation
	Model of computation
	Model of computation
	Model of computation
	Model of computation

	Complexity measures of algorithms
	Complexity measures of algorithms

	Statement of the problem
	Statement of the problem
	Statement of the problem
	Statement of the problem
	Statement of the problem

	Sorting algorithms for this model
	Sorting algorithms for this model
	Sorting algorithms for this model

	Our results
	Our results
	Our results
	Our results
	Our results
	Our results
	Our results

	outline of the algorithm
	outline of the algorithm
	outline of the algorithm
	outline of the algorithm
	outline of the algorithm
	outline of the algorithm
	outline of the algorithm
	outline of the algorithm

		t split-and-count
		t split-and-count
		t split-and-count
		t split-and-count
		t split-and-count

		t split-and-count
		t split-and-count
		t split-and-count
		t split-and-count
		t split-and-count
		t split-and-count

		t assign-workers
		t assign-workers
		t assign-workers

		t assign-workers
		t assign-workers

	sort
	merging
	ranking
	ranking
	ranking
	ranking

	Ranking: Binary tree T_m, bso
	Ranking: Binary tree T_m, bso
	Ranking: Binary tree T_m, bso
	Ranking: Binary tree T_m, bso
	Ranking: Binary tree T_m, bso

	Ranking: Layers of T_m
	Ranking: Layers of T_m
	Ranking: Layers of T_m
	Ranking: Layers of T_m
	Ranking: Layers of T_m
	Ranking: Layers of T_m

	Ranking: Layers of T_m
	Ranking: Layers of T_m

		t final-merge
		t final-merge
		t final-merge
		t final-merge

		t final-merge
		t final-merge
		t final-merge
		t final-merge

	{	t final-merge} -- complexity
	scriptsize Balancing the energy in {	t sort} and {	t final-merge}
	scriptsize Balancing the energy in {	t sort} and {	t final-merge}
	scriptsize Balancing the energy in {	t sort} and {	t final-merge}
	scriptsize Balancing the energy in {	t sort} and {	t final-merge}

	Final remarks
	Final remarks

	THE END

