Correcting Sorted Sequences in a Single Hop Radio Network

Marcin Kik

Wrocław University of Technology

Poland

FCT 2009

Correcting Sorted Sequences in a Single Hop Radio Network - p. 1

Radio network:

• n stations s_0, \ldots, s_{n-1} communicating by radio messages

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- single channel (in a single slot at most one message)

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- single *channel* (in a single slot at most one message)
- single message contains either a single key or a $\lceil \lg_2 n \rceil$ -bit integer

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- single *channel* (in a single slot at most one message)
- single message contains either a single key or a $\lceil \lg_2 n \rceil$ -bit integer
- broadcasting/listening in a single time slot requires a unit of energetic cost

- n stations s_0, \ldots, s_{n-1} communicating by radio messages
- single-hop (each station within the range of any other station)
- synchronized (time is divided into slots)
- single channel (in a single slot at most one message)
- single message contains either a single key or a $\lceil \lg_2 n \rceil$ -bit integer
- broadcasting/listening in a single time slot requires a unit of energetic cost
- memory of single station limited (constant number of variables storing either keys or $\lceil \lg_2 n \rceil$ -bit integers).

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

Complexity measures of algorithms

Time: the number of time slots used by the algorithm

Energetic cost of the algorithm: the maximal energy dissipated by a single station.

Informally: We want to sort a sequence that is almost sorted.

- Informally: We want to sort a sequence that is almost sorted.
- A k-disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.

- Informally: We want to sort a sequence that is almost sorted.
- A k-disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one old key and one new key (either equal to the old one or changed).

- Informally: We want to sort a sequence that is almost sorted.
- A k-disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one old key and one new key (either equal to the old one or changed).
- The sequence of the old keys is sorted (i.e. each station knows the position of its old key in the sorted sequence).

- Informally: We want to sort a sequence that is almost sorted.
- A k-disturbed sequence a sequence obtained from a sorted sequence by changing at most k keys.
- Each station stores one old key and one new key (either equal to the old one or changed).
- The sequence of the old keys is sorted (i.e. each station knows the position of its old key in the sorted sequence).
- We want to sort the sequence of the new keys (i.e. each station has to learn the index of its new key in the sorted sequence of the new keys).

Sorting algorithms for this model

Let n be the number of keys (stations).

Sorting algorithms for this model

Let n be the number of keys (stations).

- Singh, Prasanna (PERCOM 2003) sorting based on energetically balanced implementation of selection algorithm.
 - . Time: $O(n \log n)$
 - Energy: $O(\log n)$

Sorting algorithms for this model

Let n be the number of keys (stations).

- Singh, Prasanna (PERCOM 2003) sorting based on energetically balanced implementation of selection algorithm.
 - . Time: $O(n\log n)$
 - . Energy: $O(\log n)$
- (SOFSEM 2006) simple sorting based on (moderately) balanced merging
 - . Time: $O(n \log n)$
 - . Energy: $O(\log^2 n)$
 - Iow constants under O

Let n be the number of stations and let k be the number of actually changed keys.

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

• in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n-k+1) \rceil + 6 \lceil \lg k \rceil) - 2$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

• in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n - k + 1) \rceil + 6 \lceil \lg k \rceil) - 2$ For example: If k is $o(n/\log n)$ then time is $o(n \log n)$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg (n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n \log n)$
- with energetic cost: $3 \cdot \left\lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2 \lfloor n/k \rfloor} \rceil + 4 \cdot \left\lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10 \right\rceil$

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \left\lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2\lfloor n/k \rfloor} \rceil + 4 \cdot \left\lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10\right$ For example: If k is $O(n/\log^2 n)$ then energetic cost is O(1)

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg(n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n\log n)$
- with energetic cost: $3 \cdot \left\lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2\lfloor n/k \rfloor} \rceil + 4 \cdot \left\lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10\right$ For example: If k is $O(n/\log^2 n)$ then energetic cost is O(1)• if $\frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2} + \lceil \lg k \rceil \le \lfloor n/k \rfloor$ then the energetic

cost is bounded by 14.

Let n be the number of stations and let k be the number of actually changed keys. We can sort a k-disturbed sequence:

- in time: $4n + k \cdot (\lceil \lg k \rceil^2 + \lceil \lg (n k + 1) \rceil + 6 \lceil \lg k \rceil) 2$ For example: If k is $o(n/\log n)$ then time is $o(n \log n)$
- with energetic cost: $3 \cdot \left\lceil \frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2\lfloor n/k \rfloor} \rceil + 4 \cdot \left\lceil \frac{\lceil \lg k \rceil}{\lfloor n/k \rfloor} \rceil + 10\right$ For example: If k is $O(n/\log^2 n)$ then energetic cost is O(1)
- if $\frac{(|\lg k|+1)(|\lg k|+2)}{2} + \lceil \lg k \rceil \leq \lfloor n/k \rfloor$ then the energetic cost is bounded by 14.

k is not fixed nor limited. The algorithm adapts itself to arbitrary $k \leq n.$

1. split-and-count:

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).
 - Each station learns k the number of changed keys.

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).
 - Each station learns k the number of changed keys.
 - If k is large fraction of n then apply sorting algorithm and stop, else continue.

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).
 - Each station learns k the number of changed keys.
 - If k is large fraction of n then apply sorting algorithm and stop, else continue.
- 2. assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of the following procedures.

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).
 - Each station learns k the number of changed keys.
 - If k is large fraction of n then apply sorting algorithm and stop, else continue.
- 2. assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of the following procedures.
- 3. sort: Sorting the *b*-sequence

- 1. split-and-count:
 - Each station with unchanged key (*a-key*) learns its position in the (sorted) sequence of the unchanged keys (*a-sequence*).
 - Each station with changed key (*b-key*) learns its position in the (unsorted) sequence of the changed keys (*b-sequence*).
 - Each station learns k the number of changed keys.
 - If k is large fraction of n then apply sorting algorithm and stop, else continue.
- 2. assign-workers: Each changed key is assigned $\lfloor n/k \rfloor$ stations, that will balance among themselves the energetic cost of the following procedures.
- 3. sort: Sorting the *b*-sequence
- 4. final-merge: Merging the *b*-sequence with the *a*-sequence.

split-and-count

Each station compares its new key to its old key.

split-and-count

- Each station compares its *new* key to its *old* key.
- For $0 \le t \le n-2$, in time slot t, the station s_t sends to s_{t+1} the number of changes in s_0, \ldots, s_t .

split-and-count

- Each station compares its *new* key to its *old* key.
- For $0 \le t \le n-2$, in time slot t, the station s_t sends to s_{t+1} the number of changes in s_0, \ldots, s_t .
- In time slot n-1 the station s_{n-1} sends the global number of changes k to the remaining stations.

- Each station compares its *new* key to its *old* key.
- For $0 \le t \le n-2$, in time slot t, the station s_t sends to s_{t+1} the number of changes in s_0, \ldots, s_t .
- In time slot n-1 the station s_{n-1} sends the global number of changes k to the remaining stations.

Time: n

- Each station compares its *new* key to its *old* key.
- For $0 \le t \le n-2$, in time slot t, the station s_t sends to s_{t+1} the number of changes in s_0, \ldots, s_t .
- In time slot n-1 the station s_{n-1} sends the global number of changes k to the remaining stations.

Time: n

Energetic cost: 3

After split-and-count:

After split-and-count:

Each station knows k.

After split-and-count:

- Each station knows k.
- Each station with unchanged key (owner of this <u>a-key</u>) knows its position in the (sorted) <u>a-sequence</u>.

After split-and-count:

- Each station knows k.
- Each station with unchanged key (owner of this <u>a-key</u>) knows its position in the (sorted) <u>a-sequence</u>.
- Each station with *changed* key (*owner of this* <u>b-key</u>) knows its position in the (unsorted) <u>b-sequence</u>.

Let key_i denote the *i*th *b*-key. All stations know *k*. They are arranged in the following matrix:

• For $0 \le t \le k - 1$, in time slot t, the owner of key_t sends key_t to the workers for key_t .

- For $0 \le t \le k 1$, in time slot t, the owner of key_t sends key_t to the workers for key_t .
- For $0 \le i \le k 1$,
 - the first worker for keyi becomes the current r-worker (rank-worker).
 - the last worker for keyi becomes the current i-worker (index-worker).

Time: k

Time: k

Energetic cost: 2

sort

The *b*-sequence is sorted by a (balanced) merge-sort:

```
\begin{array}{c|c} \text{begin} \\ m \leftarrow 1; \\ \text{while } m < k \text{ do} \\ \\ \text{merge all pairs of subsequences of length } m; \\ \\ m \leftarrow 2 \cdot m; \end{array}
```

end

merging

To merge two sorted sequences, each key from one sequence has to learn its rank in the other sequence. Then it can compute its index in the merged sequence.

procedure $merge(seq_1, seq_2)$

begin

```
rank(seq_1, seq_2);
rank(seq_2, seq_1);
```

end

Ranking seq_1 in seq_2 :

ranking

Ranking seq_1 in seq_2 :

 For each key of seq_i, its current i-worker knows its index in the sorted seq_i.

ranking

Ranking seq_1 in seq_2 :

- For each key of seq_i, its current i-worker knows its index in the sorted seq_i.
- The sorted sequence seq₂, permuted by a special permutation (bso), is transmitted by the i-workers of seq₂.
 (Each i-worker transmits once.)

ranking

Ranking seq_1 in seq_2 :

- For each key of seq_i, its current i-worker knows its index in the sorted seq_i.
- The sorted sequence seq₂, permuted by a special permutation (bso), is transmitted by the i-workers of seq₂.
 (Each i-worker transmits once.)
- During these transmissions, for each key of seq1, some its r-workers are used to compute its rank in seq2.
 (Each r-worker uses constant energy.)

Let *m* be the length of seq_2 . The elements of seq_2 are arranged in the following tree:

• x-indexing – in-order (indexes of seq_2)

- x-indexing in-order (indexes of seq_2)
- *y-indexing* heap-order (transmissions order)

- x-indexing in-order (indexes of seq_2)
- *y-indexing* heap-order (transmissions order)
- bso_m an ("easily computable") permutation: for a node with *x*-index *x*, $y = bso_m(x)$ is its *y*-index.

- x-indexing in-order (indexes of seq_2)
- *y-indexing* heap-order (transmissions order)
- bso_m an ("easily computable") permutation: for a node with *x*-index *x*, $y = bso_m(x)$ is its *y*-index.
- the *i*th element of the sorted seq_2 is transmitted as the *t*th, where $t = bso_m(i)$.

• seq_2 is transmitted level by level.

- seq_2 is transmitted level by level.
- For each key of seq_1 , its current r-worker:

- seq_2 is transmitted level by level.
- For each key of seq_1 , its current r-worker:
 - knows its rank in the previously transmitted levels,

- seq_2 is transmitted level by level.
- For each key of seq_1 , its current r-worker:
 - knows its rank in the previously transmitted levels,
 - Istens only once in the next level to compute its rank in the subsequence of seq_2 enhanced by this level,

- seq_2 is transmitted level by level.
- For each key of seq_1 , its current r-worker:
 - knows its rank in the previously transmitted levels,
 - Istens only once in the next level to compute its rank in the subsequence of seq_2 enhanced by this level,
- between the the levels, the current r-workers of seq1 transfer the ranks to the next r-workers.

After the last level, each r-worker of seq1 sends the rank to the i-worker which computes the index of its key in the sequence merged from seq1 and seq2. (Procedure send-ranks-to-indexes.)

Phase 1: Computing output index for each *b*-key:

rank(b-sequence, a-sequence) (also blanced!)

Phase 1: Computing output index for each *b*-key:

- rank(b-sequence, a-sequence) (also blanced!)
- Each owner of b-key overhears in send-ranks-to-indexes the rank of this b-key in the a-sequence.

Phase 1: Computing output index for each *b*-key:

- rank(b-sequence, a-sequence) (also blanced!)
- Each owner of b-key overhears in send-ranks-to-indexes the rank of this b-key in the a-sequence.
- Each owner of *b*-key is informed by its i-worker about the final index of this key in the *sorted sequence of all keys*. (Thus, it can also compute its index in the sorted *b*-sequence.)

Phase 1: Computing output index for each *b*-key:

- rank(b-sequence, a-sequence) (also blanced!)
- Each owner of b-key overhears in send-ranks-to-indexes the rank of this b-key in the a-sequence.
- Each owner of *b*-key is informed by its i-worker about the final index of this key in the *sorted sequence of all keys*. (Thus, it can also compute its index in the sorted *b*-sequence.)

Now each owner of *b*-key knows:

- its index in the sorted output
- its index in the sorted <u>b-sequence</u>
- its rank in the *a*-sequence

Phase 2: Computing output index for each *a*-key:

 In the sorted b-sequence, each b-key informs its predecessor about its rank in the a-sequence. (Each last b-key with given rank becomes aware of this fact.)

Phase 2: Computing output index for each *a*-key:

- In the sorted b-sequence, each b-key informs its predecessor about its rank in the a-sequence. (Each last b-key with given rank becomes aware of this fact.)
- For 0 ≤ t ≤ n − k − 1, in time slot t, the last b-key from the sorted b-sequence with the rank t (if exists) informs the tth a-key from a-sequence about its index in the sorted b-sequence. (a displacement of this a-key).

Phase 2: Computing output index for each *a*-key:

- In the sorted b-sequence, each b-key informs its predecessor about its rank in the a-sequence. (Each last b-key with given rank becomes aware of this fact.)
- For 0 ≤ t ≤ n − k − 1, in time slot t, the last b-key from the sorted b-sequence with the rank t (if exists) informs the tth a-key from a-sequence about its index in the sorted b-sequence. (a displacement of this a-key).
- For 0 ≤ t ≤ n − k − 2, in time slot t, the (t + 1)st a-key that did not receive its displacement from the b-sequence, receives the displacement from its predecessor in a-sequence.

Phase 2: Computing output index for each *a*-key:

- In the sorted b-sequence, each b-key informs its predecessor about its rank in the a-sequence. (Each last b-key with given rank becomes aware of this fact.)
- For 0 ≤ t ≤ n − k − 1, in time slot t, the last b-key from the sorted b-sequence with the rank t (if exists) informs the tth a-key from a-sequence about its index in the sorted b-sequence. (a displacement of this a-key).
- For 0 ≤ t ≤ n − k − 2, in time slot t, the (t + 1)st a-key that did not receive its displacement from the b-sequence, receives the displacement from its predecessor in a-sequence.
- Each *a*-key adds its displacement to its index in *a*-sequence to get its index in the sorted sequence of all keys.

final-merge - complexity

Time: O(n)

Energetic cost: O(1) +the cost of rank

• After each merge (seq_1, seq_2) , for each key of seq_1 and seq_2 , the task of i-worker is transferred to the previous (modulo $\lfloor n/k \rfloor$) worker.(For each key – at most $\lceil \lg k \rceil$ such transfers.)

- After each merge (seq_1, seq_2) , for each key of seq_1 and seq_2 , the task of i-worker is transferred to the previous (modulo $\lfloor n/k \rfloor$) worker.(For each key at most $\lceil \lg k \rceil$ such transfers.)
- After each level of rank (seq_1, seq_2) , for each key of seq_1 , the task of r-worker is transferred to the next (modulo $\lfloor n/k \rfloor$) WOrker.(For each key – at most $\frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2}$ such transfers.)

- After each merge (seq_1, seq_2) , for each key of seq_1 and seq_2 , the task of i-worker is transferred to the previous (modulo $\lfloor n/k \rfloor$) worker.(For each key at most $\lceil \lg k \rceil$ such transfers.)
- After each level of rank (seq_1, seq_2) , for each key of seq_1 , the task of r-worker is transferred to the next (modulo $\lfloor n/k \rfloor$) WOrker.(For each key – at most $\frac{(\lceil \lg k \rceil + 1)(\lceil \lg k \rceil + 2)}{2}$ such transfers.)
- The energetic cost of each transfer is constant.

Final remarks

• Robustness to interferences: How to correct sequences in the model, where each message is received with probability p < 1?

Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Final remarks

- Robustness to interferences: How to correct sequences in the model, where each message is received with probability p < 1?

Algorithm for sorting has been proposed on ADHOC-NOW 2008.

Simulation in Java available at:

http://www.im.pwr.wroc.pl/~kik/CorrectionRN.java

THE END

THANK YOU!