Periodic Multisorting Comparator Networks*

Marcin Kik

kik@im.pwr.wroc.pl

Institute of Mathematics, Wroctaw University of Technology
ul. Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, Poland

Abstract. We present a family of periodic comparator networks that
transform the input so that it consists of a few sorted subsequences.
The depths of the networks range from 4 to 2logn while the number of
sorted subsequences ranges from 2 log n to 2. They work in time clog® n+
O(log n) with 4 < ¢ < 12, and the remaining constants are also suitable
for practical applications. So far, known periodic sorting networks of a
constant depth that run in time O(log?n) (a periodic version of AKS
network [7]) are impractical because of complex structure and very large
constant factor hidden by big “Oh”.

Keywords: sorting, comparator networks, parallel algorithms.

1 Introduction

Comparator is a simple device capable of sorting two elements. Many compara-
tors can be connected together to form a comparator network. This way we get
the classical framework for sorting algorithms. Optimal arranging the compara-
tors turned out to be a challenge. The main complexity measures of comparator
networks are time complexity (depth or number of steps) and the number of
comparators. The most famous sorting network is AKS network with asymptot-
ically optimal depth O(logn) [1], however the big constant hidden by big “Oh”
makes it impractical. The Batcher networks of depth ~ 1log”n [2], seem to be
very attractive for practical applications.

A periodic network is repeatedly used on the intermediate results until the
output becomes sorted, thus the same comparators are reused many times. In this
case, the time complexity is the depth of the network multiplied by the number
of iterations. The main advantage of periodicity is the reduction of the amount of
hardware (comparators) needed for the realization of the sorting algorithm, with
a very simple control mechanism providing the output of one iteration as the
input for the next iteration. Dowd et al, [3], reduced the number of comparators
from 2(nlog®n) to %nlog n, while keeping the sorting time logn, by the
use of a periodic network of depth logn. (The networks of depth d have at most
dn /2 comparators.) There are some periodic sorting networks of a constant depth
([10], [5], [7]). In [7], constant depth networks with time complexity O(log® n) are

* research supported by KBN grant 7T11C 3220 in the years 2002, 2003

obtained by “periodification” of the AKS network, and more practical solutions
with time complexity O(log® n), are obtained by “periodification” of the Batcher
network. On the other hand there is not known any w(logn) lower bound on the
time complexity of periodic sorting networks of constant depth. Closing the gap
between the known upper bound of O(log® n) and the trivial general lower bound
2(log n) seems to be a very hard problem.

Periodic networks of constant depth can also be used for simpler tasks, such
as merging sorted sequences [6], or resorting sequences with few values modified
[4].

1.1 New Results

We assume that the values are stored in the registers and the only allowed
operations are compare-exchange operations (applications of comparators) on
the pairs of registers. Such an operation takes the two values stored in the
pair of registers and stores the lower value in the first register and the greater
value in the second register. (This interpretation differs from the one presented
for instance in [8] but is more useful when periodic comparator networks are
concerned.)

We present a family of periodic comparator networks NN, ;. The input size
of Ny i is n = 4m2F. The depth of N, is 2[k/m] + 2. In Section 4 we prove
the following theorem.

Theorem. The periodic network Ny, . transforms the input into 2m sorted sub-
sequences of length n/(2m) in time 4k* + 8km + O(k + m).

For example, the network N7 ; is a network of depth ~ 2logn that produces
2 sorted sequences in time & 4log”n + O(logn). On the other hand, Nii is a
network of depth 4 that transforms the input into & 2logn sorted sequences in
time ~ 12log” n + O(logn). Due to the large constants in the known periodic
constant depth networks sorting in time O(log®n), [7], it could be interesting
alternative to use Ny, i to produce very much ordered (although not completely
sorted) output.

The output produced by N, can be finally sorted by a network merging 2m
sequences. This can be performed by the very efficient multiway merge sorting
networks [9]. It is an interesting problem to find efficient periodic network of
constant depth that merges multiple sorted sequences. The periodic networks
of constant depth that merge two sorted sequences in time O(logn) are already
known [6].

As Ny, . outputs multiple sorted sequences, we call it a multisorting network.
Much simpler multisorting networks of constant depth exist if some additional
operations are allowed (such as permutations of the elements in the registers
between the iterations). However, we consider only the case restricted to the
compare-exchange operations.

2 Preliminaries

By a comparator network we mean a set of registers Ry, ..., R, 1 together with
a finite sequence of layers of comparators. Every moment a register R; contains
a single value (denoted by v(R;)) from some totally ordered set, say IN. We say
that the network stores a sequence v(Rp),...,v(Rp_1). A subset S of registers
is sorted if for all R;, R; in S, i < j implies that v(R;) < v(R;). A comparator
is denoted by an ordered pair of registers (R;, R;). If v(R;) = z and v(R;) =
before an application of the comparator (R;, R;), then v(R;) = min{z,y} and
v(R;) = max{z,y} after the application of (R;, R;). A set of comparators L
forms a layer if each register is contained in at most one of the comparators
of L. So all the comparators of a layer can be applied simultaneously. We call
such application a step. The depth of the network is the number of its layers. An
input is the initial value of the sequence v(Ryp),...,v(Rn—1). An output of the
network N is the sequence v(Rp), - ..,v(R,—1) obtained after application of all
its layers (application of N) on some initial input sequence. We can iterate the
network’s application, by applying it to the output of its previous application.
We call such network a periodic network. The time complexity of the periodic
network is the number of steps performed in all iterations.

3 Definition of the Network N,

We define a periodic network N, j for positive integers m and k. For the sake of
simplicity we fix the values m and k£ and denote NN, by V. Network N contains
n registers Ry, ..., R, 1, where n = 4m-2*. It will be useful to imagine that the
registers are arranged in a three-dimensional matrix M of size 2 x 2m x 2¥. For
0<z<1,0<y<2m—1and0<z<2F—1, the element M, , . is a register
R; such that i = x + 2y + 4mz. For the intuitions, we assume that Z and Y
coordinates are increasing downwards and rightwards respectively. By a column
C,,, we mean a subset of registers M, , . with 0 <z < 2*. P, = C,,UC, , is a
pair of columns. An Z-slice is a subset of registers with the same 7 coordinate.

Let d = [k/m]. We define the sets of comparators X, Yy, Y1, and Z;, for
0 <i < d, as follows. (Comparators of X, Y; and Z; are called X -comparators,
Y -comparators and Z-comparators, respectively.) The comparators of X, Yy and
Y1 act in each Z-slice separately (see Figure 1). Set X contains comparators
(Mo,y,=, M1,,-), for all y and z. Let ¥ be an auxiliary set of all comparators
(Mg .2y My) such that y' = (y + 1) mod 2m. Yy contains all comparators
(Mg .2y My) from Y, such that y is even. Y7 consists of these comparators
from Y that are not in Yy. Note that the layer Y; contains nonstandard com-
parators (Mg 2m—1,2, Mz p,2) (i.e. comparators that place the greater value in
the register with lower index).

In order to describe Z; we define a matrix « of size d x 2m (with the rows
indexed by the first coordinate) such that, for 0 <i < d and 0 < j < 2m:

— if j is even then o, ; =d - j/2 +1,
- lf] is odd Q5 = QG am—1—j-

R o

|_)d__ E E --ﬁﬁé--- E E “*‘ﬁ_l

Y

Fig. 1. Comparator connections within a single Z-slice. Dotted (respectively, dashed
and solid) arrows represent comparators from X (respectively, Yy and Y7).

For example, for m = 4 and 4 < k < 8, « is the following matrix:

06244260
17355371

For 0 < i < d, Z; consists of comparators (M y ,, My, ») such that 0 <y < 2m
and z' = z + 2k=1=2i» provided that 0 < z, 2’ < 2 and k=1 —a;,, > 0. By a
height of the comparator (My, . 5, My,) we mean z' — z. Note that each single
Z-comparator is contained within a single pair of columns and all comparators
of Z; contained in the same pair of columns are are of the same height which
is a power of two. All Z-comparators of height 2¥=1 28=2 2k=4 (which are
from Zy, Zy,...,Z4_1, respectively) are placed in the pairs of columns P, and
Pop_1. All Z-comparators of height 25=1=4 . 2k=2d (from Z,,..., Z4_1) are
placed in P, and Py, 3. And so on. Generally, for 0 <i < d and 0 < y < m, the
height of all comparators of Z; contained in P, and in Psp,—1_2y is gk—l—dy—i

R
\
0

. iz . iz .
height 4 P height 2 Lo height 1

Fig. 2. Z-comparators of different heights within the pairs of columns, for k = 3.

The sequence of layers of the network N is (Lo, ..., Lag+1) where Lo; = X,
Lyiy1 = Z;, for 0 < i < d, and Lag = Yy, Logy1 = Y1.

-
P

------- > X-comparators —— Z-comparators

Y,-comparators T~ 77 = Y,-comparators

Fig. 3. Network N3 3. For clarity, the Y-comparators are drawn separately.

A set of comparators K is symmetricif (R;, R;) € K implies (R,—1—j, Rn—1-i) €
K. Note that all layers of N are symmetric.

Figure 3 shows a network Ny ,,, for Kk = m = 3. As m > k, this network
contains only one layer of Z-comparators Zj.

4 Analysis of the Computation of N,

The following theorem is a more detailed version of the theorem stated in the
introduction.

Theorem 1. After T < 4k> + 8mk + 7k + 14m + 6% + 13 steps of the periodic
network Ny, . all its pairs of columns are sorted.

We denote Ny, i by N. By the zero-one principle, [8], it is enough to show this
property for the case when only zeroes and ones are stored in the registers. We
replace zeroes by negative numbers and ones by positive numbers. These numbers
can increase their absolute values between the applications of subsequent layers
in periodic computation of NV, but can not change their signs. We show that,
after T' steps, negative values preceed all positive values within each pair of
columns.

Initially, let v(Rp), . .. v(Rn—1) be arbitrary sequence of the values from {—1,1}.
We apply IV to this sequence as a periodic network. We call the application of
the layer Y; (respectively, X,Z;) an Y-step (respectively, X-step, Z-step).

To make the analysis more intuitive, we assume that each register stores
(besides the value) an unique element. The value of an element e stored in R;,
(denoted wv(e)) is equal to v(R;). If v(e) > 0 then e is positive. Otherwise e
is negative. If just before the application of comparator ¢ = (R;, R;) we have
v(R;) > v(Rj;) then during the application of ¢ the elements are exchanged
between R; and R;. If ¢ is from Yj or Y; then the elements are exchanged also
if v(R;) = v(R;). If e is a positive (respectively, negative) element contained in
R; or R, before the application of ¢, then e wins in c if, after the application of
¢, it ends up in R; (respectively, R;). Otherwise e loses in c.

We call the elements that are stored during the X-steps and Z-steps in the
pairs of columns Py;, for 0 < i < m, right-running elements. The remaining
elements are called left-running.

Let k' = md. (Recall that d = [k/m].) Let 6 = 1/(4k’). Note that k'd < 1.
By critical comparators we mean the comparators between Ps,,—1 and Py from
the layer Y;. We modify the computation of N as follows:

— After each Z-step, we increase the values of the positive right-running ele-
ments and decrease the values of the negative left-running elements by 4.
(We call it d-increase.)

— When a positive right-running (respectively, negative left-running) element
e wins in a critical comparator, we increase v(e) to |v(e) + 1] (respectively,
decrease v(e) to [v(e) —1]).

Note that once a positive (respectively, negative) element becomes right-
running (respectively, left-running) it remains right-running (respectively, left-
running) for ever. All the positive left-running and negative right-running ele-
ments have absolute value 1.

Lemma 1. If, during the Z-step t, |v(e)| =1+ y'd, where l and y' are nonneg-
ative integers such that 1 > 2 and 0 < y' < k', then, during t, e can be processed
only by comparators with height 281V

Let e be a positive element. (A negative element behaves symmetrically.)
Since v(e) > 1, e is a right-running element during step ¢. At the moment when
e started being right-running, its value was equal 1. A right-running element
can be d-increased at most k' times between its subsequent wins in the critical
comparators, and k'd < 1. Thus e reached the value 2 when it entered P, for
the first time. Then its value was being increased by §, after each Z-step (d
times in each P»;), and rounded up to the next integer during its wins in critical
comparators. The lemma follows from the definition of o and Z;: The heights
of the Z-comparators from the subsequent Z-layers Z;, for 0 < ¢ < d, in the
subsequent pairs of columns P»;, for 0 < j < m, are the decreasing powers of
two. O

We say that a register M, . is [-dense for v if

— in the case v > 0: v(M, , . 1if217) > v, for all i > 0 such that z + i[2'] < 2,
and
— in the case v < 0: v(M, , . ;ror7) <o for all i > 0 such that z —i[2] > 0.

Note that, for I < 0,“l-dense” means “O-dense”. An element is [-dense for v if it
is stored in a register that is [-dense for v.

Lemma 2. If M, , . is [-dense for v > 0 (respectively, v < 0), then, for 0 <
v' < (respectively, v <v' <0), My, . is l-dense for v'.

If M, . is l-dense for v > 0 (respectively, v < 0), then, for all j > 0
(respectively, j < 0), My, .. i1 is I-dense for v.

If M, . is I-dense for v > 0 (respectively, v < 0) and M, ,, .. |o1-1| (respec-
tively, M, ,, . |21-1|) is I-dense for v, then M, , . is (I — 1)-dense for v.

The properties can be easily derived from the definition. O

Lemma 3. Let L be any layer of N and (M, -, My 4) € L.

If My,y.» or My o o is I-dense for v > 0 (respectively, v < 0), just before an
application of L, then My v .+ (respectively, M, , .) is l-dense for v just after
the application of L.

If My .. and My o .o are l-dense for v, just before the application of L, then
My y,» and My o .o are l-dense for v just after the application of L.

Proof. The lemma follows from the fact that, for each integer i such that
0 < z+i[21, 2/ +i[2'] < 2¥, the comparator (M, , . i1, My 4 2o pifar)) is
alsoin L. O

Corollary 1. If an element [-dense for v wins during an application of a layer
L of N, then it remains l-dense for v. If it looses to another element l-dense for
v, then it also remains l-dense for v. If it wins in critical comparator and v > 0
(respectively, v < 0), then it becomes [-dense for |v + 1] (respectively, [v —1]).

If just before Z-step t, e is right-running positive (respectively, left-running
negative) element l-dense for v > 0 (respectively, v < 0), and, during t, e looses
to another element l-dense for v or wins, then it becomes [-dense for v + §
(respectively, v — &), after the §-increase following t.

The following lemma states that each positive element e that was right-
running for a long time is contained in a dense foot of the elements with the
value v(e) or greater, and an analogical property holds for left-running negative
values.

Lemma 4. Consider the configuration of N after the Z-step. For nonnegative
integers l,s and y' such that y' < k', for each element e:

Ifv(e) =142+ s+y'd, then e is (k —1)-dense for 1 +2+y'd and, if y' > 1,
then e is (k —1 — 1)-dense for 1 + 2+ y'd.

Ifv(e) = —(I1+2+s+y'd), then e is (k —1)-dense for —(1 +2+y'd) and, if
y' > 1, then e is (k — [— 1)-dense for —(1 + 2 + y'd).

Proof. We prove only the first part. The second part is analogical since all layers
of N are symmetrical. The proof is on induction by /. Let 0 < [< k. Let e be
any element with v(e) = [4+2+ s+ y'd, for some nonnegative integers s,y’, where
y' < K'. The element e was right-running during each of the last y' Z-steps.
These steps were preceeded by a critical step ¢, that increased v(e) to | + 2 + s.
Let t; (respectively, ¢}) be the (i + 1)-st X-step (respectively, Z-step) after step
t. Let My, y, »; (vespectively, M, ,. ..) be the register that stored e just after
t; (vespectively, t}). Let v; denote the value [4+ 2 + id. During each step ¢; and
tr, all elements e’ with v(e’) > wv(e), in the pair of columns containing e, are
(k — I)-dense for v;. (For [= 0 it is obvious, since the “height” of N is 2*, and,
for [> 0, it follows from the induction hypothesis and Corollary 1, since e’ was
(k —1)-dense for | + 1 already before ¢, and, hence, (k — I)-dense for vg just after

)

Claim (Breaking Claim). For 0 < i < [, just after the X-step t;, the registers
Mo, y; 420 and My . .. on—i are (k — [)-dense for v;, if they exist.

We prove the claim by induction on i. For ¢ = 0 it is obvious. (M, ., o+ and
M, 4.+ 42+ do not exist.)

Let 0 < i < I. Consider the configuration just after step ¢;—1. (See Figure
4.) Since t;—1 was an X-step, v(Miy; ,,;_,) > v(e) and, hence, My, , ., , is
(k—1)-dense for v; 1. Thus, My ,, , .. ,jor—i is (k—1)-dense for v; 1, since ok—i
is multiple of 2*~!. By the induction hypothesis of the claim, Moy 2y 4ok—i+
and My, | ., jor-i+1 are (k — [)-dense for v; ;. Just after the step #;_,,
My \ siyqok—iy and My . .. jok—i+1 remain (k — [I)-dense for v; i, since
they were compared to the registers M, | .., jor—i+1 and Mg . | .. fok—ite

x=0 x=1

Fig. 4. The configuration after t;_1 in P,, , in the registers with Z-coordinates z;_1 +
j2F7% for 0 < j < 4. (Black registers are (k — [)-dense for v;_;. Arrows denote the
comparators from #;_;.)

that were (k — [)-dense for v; 1. My, , .. ,yor—i+1 remains (k — [)-dense for
vi1. Moy, , 2 ,4o2r—i also becomes (or remains) (k — I)-dense for v; 1, since it
was compared to My, , -, ,. Thus, just after the Z-step t;_,, for 2 € {0, 1}, the
registers My = M, . | . ox-i are (k—1I)-dense for v;_ (and for v;, after the J-
increase). (Either z{_; = z_y and M = M, . | .. 4or—i, OF 2}_; = z;_1 + 2~
and My, = M, ,. | .. 4or—-i+1.) Ifi mod d = 0 then, during the next two Y-steps,
the elements from both M{ and M] together with the element e are moved “hor-
izontally” to Py;/q (Wining by the way). Thus, by Corollary 1, just before and
after the X-step t;, for x € {0, 1}, the registers M, ,. .. ox—: are (k — [)-dense
for v;. This completes the proof of the claim.

The next claim shows how the values v; or greater form twice more condensed
foot below e.

Claim (Condensing Claim). After the Z-step t], e is (k — [— 1)-dense for v; (and
for v;41, after the d-increase).

Consider the configuration just after X-step ¢;. The registers My, 4, ., and, by
the Breaking Claim, My ,, ., ox—1 and M ,, . . ox—1 are (k—1I)-dense for v;. Since
the last step was an X-step, My, is (k —)-dense for vj.

Consider the following scenarios of the Z-step t; (see Figure 5):

1. eremains in Moy, .,: Then the register My, ., 1ok-1-1 becomes (k—1I)-dense
for vy, by Lemma 3, since M 4, ., was (k—1[)-dense for v; just before ¢;. Thus
e becomes (k — [— 1)-dense for v;, by Lemma 2.

2. e is moved from M y, ., to Mg, ., 4or—1-1: Then by Corollary 1, e remains
(k — I)-dense for v;, and the register M, » ;o1 remains (k — I)-dense for
v;. Thus e becomes (k — [— 1)-dense for v;, by Lemma 2.

3. e remains in My, -,: Then v(e) < v(My y, 4 q08-1-1) < V(M 2 qor-1-1)
just before t;. (The second inequality is forced by the X-step t;). Hence, for

z € {0,1}, R}, = M, ,, ., 1or—1—1 Was (k—1I)-dense for v; just before ¢;. During

Fig. 5. The scenarios of .

t; the register R} is compared to My ,, ., or—1. So R| remains (k — [)-dense
for v;. Since e was compared to Ry, it also remains (k — [)-dense for v;. By
Lemma 2, e is (k — I — 1)-dense for v; just after ¢].

4. eis moved from My, ., to R' = M, ,, .,_ox-1-1: During t;, R' was compared
to My, .z, and R" = My, ., was compared to My, . 1oe—1-1 that was
(k — 1)-dense for v; just before tj, by the Breaking Claim applied to the
element in R'. Thus, by Lemma 3, the registers R’ and R" remain (k — [)-
dense for v; just after ¢;. By Lemma 2, R' is (k —[— 1)-dense for v; just after
t).

Since there are no other scenarios for e and the subsequent d-increase is the same
for all positive elements in P,,, the proof of the claim is completed.

By Corollary 1, the element e remains (k — I — 1)-dense for v;, for i > [, since
other elements in its pair of columns with values v(e) or greater are now also
(k — 1 — 1)-dense for v;, and during Y-steps e is wining (right-running).

For I > k, “(k —I)-dense for v” means “0O-dense for v”. The element e with
v(e) = k+ 14 kd is O-dense for k + 1 + kd. All the positive elements below it
increase their values at the same rate as e. Thus, when v(e) reaches k + 2, it
becomes 0-dense for k£ + 2. By repeating this reasoning for the values k + 2 and
greater we complete the proof of the Lemma 4. O

By Lemma 4, whenever any element e reaches the value k + 2 (in the pair
of columns Py) it is 0-dense for k + 2. Then, by the Breaking Claim, after the
X-step after e reaches the value k + 2 + k6, e is stored in a register M, , . such
that Mo,y »+1 is also O-dense for k 4+ 2 + kd. Hence, all the elements following e
in its pair of columns are 0-dense for k + 2+ k§. By Corollary 1, this property of
e remains valid forever. Since the network is symmetric, we have the following
corollary:

Corollary 2. Consider a configuration in a pair of columns P, just after an
X -step.

If, for some register R; € Py, v(R;) > k+ 2+ kd, then, for all R; € P, such
that j > i, we have v(R;) > k+ 2+ kJ.

If, for some register R; € Py, v(R;) < —(k + 2 + kJ), then, for all R; € P,
such that j < i, we have v(R;) < —(k + 2 + k6).

Now, it is enough to show that, after the last X-step of the first T' steps, all
right-running positive and all left-running negative elements have the absolute
values k+2+ k¢ or greater. Then in each pair of columns containing right-running
elements, the —1s are above the positive values, and in each pair of columns
containing left-running elements, the 1s are below the negative elements.

Lemma 5. If, after m Y-steps, and the next k'(k + 1)+ k Z-steps, and the next
X-step, e is a left-running positive (respectively, right-running negative) element,
then e remains left-running (respectively, right-running) forever.

Let e be positive. (The proof for e negative is analogical). During each of
the first m Y-steps, e was compared with the positive right-running elements.
For ¢t > 0, let y; be such that e was in P, just after the (¢ + 1)st Y-step. For
0 <i < m,let S; (respectively, S}) denote the set of positive elements that were
in Py, (respectively, Py, 11)mod2m) just after (i + 1)st Y-step. Let S” be the
set of negative elements in P, _, just after the mth Y-step. For 0 < i < m,
|Sm_1] =2-2% —|8"| < |S!|, since S;—1 C S; and |S;| < |S!|. Note that, for all
t > m, during the (¢ + 1)st Y-step, the pair of columns containing (left-running)
S" is compared to the pair of columns containing (right-running) S; .4 m-

After the next k'(k+ 1) + k Z-steps all the elements of S have values —(k +
2+ kd) or less, and, for 0 < i < k, the elements of S} have values k + 2 + kd or
greater (they have walked at least k + 1 times through the critical comparators
and then increased their values by ¢ at least k times during Z-steps). Let ¢’ be
the next X-step. Let ¢ be any Y-step after ¢’ such that e is still in the same
pair of columns as S”. Before the step ¢, the elements in S” and each S} were
processed by an X-step after their absolute values had reached k 42+ ké. Hence,
by the Corollary 2, just before the Y-step ¢, all the final |S}| registers of the pair
of columns containing S store the values k 4+ 2 + kd or greater and the pair
of columns containing S” has all the initial |S”| registers filled with the values
—(k + 2+ k9) or less. Thus, e is stored in one of its remaining 2 - 2¥ — |S"| final
registers and, during the Y-step ¢, e is compared with a value k + 2 + kd or
greater and it must remain left-running. O

The depth of N is 2d + 2. Each iteration of N performs two Y-steps as its
last steps. Thus the first m Y-steps are performed during the first (2d+2)[m/2]
steps. Each iteration of N performs d Z-steps. Thus, the next k'(k + 1) + k Z-
steps are performed during the next (2d + 2)[(k'(k + 1) + k)/d] steps. After the
next X-step, t', by Lemma 5, the set S of positive right-running and negative
left-running elements remains fixed. After the next [(k'(k+ 1) + k)/d] iterations
absolute values of elements in S are k + 2 + kd or greater. (#' was the first step
of these iterations.) After the first X-step of the next iteration, by Corollary 2,
in all pairs of columns the negative values preceed the positive values. We can
now replace negative values with zeroes, positive values with ones, and, by the

zero-one principle, we have all the pairs of columns sorted. (Note that, by the
definition of N, once all the pairs of columns are sorted, they remain sorted for
ever.)

We can estimate the number of steps by T' < (2d+2)([m/2] +2[(k' (k+ 1)+
k)/d]) + 1. Recall that d = [k/m]. It can be verified that T' < 4k* 4+ 8mk + 7k +
14m + 6% + 13. This completes the proof of Theorem 1.

Remarks: Note that the network N j; can be simplified to a periodic sorting
network of depth 2logn, by removing the Y-steps and merging Py with P;.
However, better networks exist, [3], with depth logn that sort in logn iterations.
Note also that the arrangement, of the registers in the matrix M can be arbitrary.
We can select the one that is most suitable for the subsequent merging.

Acknowledgments

I would like to thank Mirostaw Kutytowski for his useful suggestions and com-
ments on this paper.

References

1. M. Ajtai, J. Koml6s and E. Szemerédi. Sorting in clogn parallel steps. Combina-
torica, Vol. 3, pages 1-19, 1983.

2. K. E. Batcher. Sorting networks and their applications. Proceedings of 32nd
AFIPS, pages 307-314, 1968.

3. M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting net-
work. Journal of the ACM, Vol. 36, pages 738-757, 1989.

4. M. Kik. Periodic correction networks. Proceedings of the Euro-Par 2000, Springer
Verlag, LNCS 1900, pages 471-478, 2000.

5. M. Kik, M. Kutylowski and G. Stachowiak. Periodic constant depth sorting net-
work. Proceedings of the 11th STACS, Springer Verlag, LNCS 775, pages 201-212,
1994.

6. M. Kutylowski, K. Lory$ and B. Oesterdiekhoff. Periodic merging networks. Pro-
ceedings of the 7th ISAAC, pages 336—-345, 1996.

7. M. Kutytowski, K. Lory$, B. Oesterdiekhoff, and R. Wanka. Fast and feasible
periodic sorting networks. Proceedings of the 55th IEEE-FOCS, 1994.

8. D. E. Knuth. The art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

9. De-Lei Lee and K. E. Batcher. A multiway merge sorting network. IEEE Transac-
tions on Parallel and Distributed Systems 6, pages 211-215, 1995.

10. U. Schwiegelshohn. A short-periodic two-dimensional systolic sorting algorithm.
IEEE International Conference on Systolic Arrays, pages 257264, 1988.

