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Abstrat. We present a family of periodi omparator networks that

transform the input so that it onsists of a few sorted subsequenes.

The depths of the networks range from 4 to 2 log n while the number of

sorted subsequenes ranges from 2 log n to 2. They work in time  log

2

n+

O(log n) with 4 �  � 12, and the remaining onstants are also suitable

for pratial appliations. So far, known periodi sorting networks of a

onstant depth that run in time O(log

2

n) (a periodi version of AKS

network [7℄) are impratial beause of omplex struture and very large

onstant fator hidden by big \Oh".
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1 Introdution

Comparator is a simple devie apable of sorting two elements. Many ompara-

tors an be onneted together to form a omparator network. This way we get

the lassial framework for sorting algorithms. Optimal arranging the ompara-

tors turned out to be a hallenge. The main omplexity measures of omparator

networks are time omplexity (depth or number of steps) and the number of

omparators. The most famous sorting network is AKS network with asymptot-

ially optimal depth O(log n) [1℄, however the big onstant hidden by big \Oh"

makes it impratial. The Bather networks of depth �

1

2

log

2

n [2℄, seem to be

very attrative for pratial appliations.

A periodi network is repeatedly used on the intermediate results until the

output beomes sorted, thus the same omparators are reused many times. In this

ase, the time omplexity is the depth of the network multiplied by the number

of iterations. The main advantage of periodiity is the redution of the amount of

hardware (omparators) needed for the realization of the sorting algorithm, with

a very simple ontrol mehanism providing the output of one iteration as the

input for the next iteration. Dowd et al, [3℄, redued the number of omparators

from 
(n log

2

n) to

1

2

n logn, while keeping the sorting time log

2

n, by the

use of a periodi network of depth logn. (The networks of depth d have at most

dn=2 omparators.) There are some periodi sorting networks of a onstant depth

([10℄, [5℄, [7℄). In [7℄, onstant depth networks with time omplexity O(log

2

n) are

?
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obtained by \periodi�ation" of the AKS network, and more pratial solutions

with time omplexity O(log

3

n), are obtained by \periodi�ation" of the Bather

network. On the other hand there is not known any !(logn) lower bound on the

time omplexity of periodi sorting networks of onstant depth. Closing the gap

between the known upper bound of O(log

2

n) and the trivial general lower bound


(log n) seems to be a very hard problem.

Periodi networks of onstant depth an also be used for simpler tasks, suh

as merging sorted sequenes [6℄, or resorting sequenes with few values modi�ed

[4℄.

1.1 New Results

We assume that the values are stored in the registers and the only allowed

operations are ompare-exhange operations (appliations of omparators) on

the pairs of registers. Suh an operation takes the two values stored in the

pair of registers and stores the lower value in the �rst register and the greater

value in the seond register. (This interpretation di�ers from the one presented

for instane in [8℄ but is more useful when periodi omparator networks are

onerned.)

We present a family of periodi omparator networks N

m;k

. The input size

of N

m;k

is n = 4m2

k

. The depth of N

m;k

is 2dk=me + 2. In Setion 4 we prove

the following theorem.

Theorem. The periodi network N

m;k

transforms the input into 2m sorted sub-

sequenes of length n=(2m) in time 4k

2

+ 8km+O(k +m).

For example, the network N

1;k

is a network of depth � 2 logn that produes

2 sorted sequenes in time � 4 log

2

n + O(log n). On the other hand, N

k;k

is a

network of depth 4 that transforms the input into � 2 logn sorted sequenes in

time � 12 log

2

n + O(log n). Due to the large onstants in the known periodi

onstant depth networks sorting in time O(log

2

n), [7℄, it ould be interesting

alternative to use N

k;k

to produe very muh ordered (although not ompletely

sorted) output.

The output produed by N

m;k

an be �nally sorted by a network merging 2m

sequenes. This an be performed by the very eÆient multiway merge sorting

networks [9℄. It is an interesting problem to �nd eÆient periodi network of

onstant depth that merges multiple sorted sequenes. The periodi networks

of onstant depth that merge two sorted sequenes in time O(log n) are already

known [6℄.

As N

m;k

outputs multiple sorted sequenes, we all it a multisorting network.

Muh simpler multisorting networks of onstant depth exist if some additional

operations are allowed (suh as permutations of the elements in the registers

between the iterations). However, we onsider only the ase restrited to the

ompare-exhange operations.



2 Preliminaries

By a omparator network we mean a set of registers R

0

; : : : ; R

n�1

together with

a �nite sequene of layers of omparators. Every moment a register R

i

ontains

a single value (denoted by v(R

i

)) from some totally ordered set, say IN. We say

that the network stores a sequene v(R

0

); : : : ; v(R

n�1

). A subset S of registers

is sorted if for all R

i

, R

j

in S, i < j implies that v(R

i

) � v(R

j

). A omparator

is denoted by an ordered pair of registers (R

i

; R

j

). If v(R

i

) = x and v(R

j

) = y

before an appliation of the omparator (R

i

; R

j

), then v(R

i

) = minfx; yg and

v(R

j

) = maxfx; yg after the appliation of (R

i

; R

j

). A set of omparators L

forms a layer if eah register is ontained in at most one of the omparators

of L. So all the omparators of a layer an be applied simultaneously. We all

suh appliation a step. The depth of the network is the number of its layers. An

input is the initial value of the sequene v(R

0

); : : : ; v(R

n�1

). An output of the

network N is the sequene v(R

0

); : : : ; v(R

n�1

) obtained after appliation of all

its layers (appliation of N) on some initial input sequene. We an iterate the

network's appliation, by applying it to the output of its previous appliation.

We all suh network a periodi network. The time omplexity of the periodi

network is the number of steps performed in all iterations.

3 De�nition of the Network N

m;k

We de�ne a periodi network N

m;k

for positive integers m and k. For the sake of

simpliity we �x the values m and k and denote N

m;k

by N . Network N ontains

n registers R

0

; : : : ; R

n�1

, where n = 4m �2

k

. It will be useful to imagine that the

registers are arranged in a three-dimensional matrix M of size 2� 2m� 2

k

. For

0 � x � 1, 0 � y � 2m� 1 and 0 � z � 2

k

� 1, the element M

x;y;z

is a register

R

i

suh that i = x + 2y + 4mz. For the intuitions, we assume that Z and Y

oordinates are inreasing downwards and rightwards respetively. By a olumn

C

x;y

we mean a subset of registers M

x;y;z

with 0 � z < 2

k

. P

y

= C

0;y

[C

1;y

is a

pair of olumns. An Z-slie is a subset of registers with the same Z oordinate.

Let d = dk=me. We de�ne the sets of omparators X , Y

0

, Y

1

, and Z

i

, for

0 � i < d, as follows. (Comparators of X , Y

j

and Z

i

are alled X-omparators,

Y -omparators and Z-omparators, respetively.) The omparators of X , Y

0

and

Y

1

at in eah Z-slie separately (see Figure 1). Set X ontains omparators

(M

0;y;z

;M

1;y;z

), for all y and z. Let Y be an auxiliary set of all omparators

(M

x;y;z

;M

x;y

0

;z

) suh that y

0

= (y + 1) mod 2m. Y

0

ontains all omparators

(M

x;y;z

;M

x;y

0

;z

) from Y , suh that y is even. Y

1

onsists of these omparators

from Y that are not in Y

0

. Note that the layer Y

1

ontains nonstandard om-

parators (M

x;2m�1;z

;M

x;0;z

) (i.e. omparators that plae the greater value in

the register with lower index).

In order to desribe Z

i

we de�ne a matrix � of size d � 2m (with the rows

indexed by the �rst oordinate) suh that, for 0 � i < d and 0 � j < 2m:

{ if j is even then �

i;j

= d � j=2 + i,

{ if j is odd �

i;j

= �

i;2m�1�j

.



X

Y

Fig. 1. Comparator onnetions within a single Z-slie. Dotted (respetively, dashed

and solid) arrows represent omparators from X (respetively, Y

0

and Y

1

).

For example, for m = 4 and 4 < k � 8, � is the following matrix:

�

0 6 2 4 4 2 6 0

1 7 3 5 5 3 7 1

�

:

For 0 � i < d, Z

i

onsists of omparators (M

1;y;z

;M

0;y;z

0

) suh that 0 � y < 2m

and z

0

= z + 2

k�1��

i;y

provided that 0 � z, z

0

< 2

k

and k � 1 � �

i;y

� 0. By a

height of the omparator (M

x;y;z

;M

x

0

;y

0

;z

0

) we mean z

0

�z. Note that eah single

Z-omparator is ontained within a single pair of olumns and all omparators

of Z

i

ontained in the same pair of olumns are are of the same height whih

is a power of two. All Z-omparators of height 2

k�1

; 2

k�2

; : : : ; 2

k�d

(whih are

from Z

0

; Z

1

; : : : ; Z

d�1

, respetively) are plaed in the pairs of olumns P

0

and

P

2m�1

. All Z-omparators of height 2

k�1�d

; : : : ; 2

k�2d

(from Z

0

; : : : ; Z

d�1

) are

plaed in P

2

and P

2m�3

. And so on. Generally, for 0 � i < d and 0 � y < m, the

height of all omparators of Z

i

ontained in P

2y

and in P

2m�1�2y

is 2

k�1�dy�i

.

height 4

X

Z

X

Z
height 2

X

Z
height 1

Fig. 2. Z-omparators of di�erent heights within the pairs of olumns, for k = 3.

The sequene of layers of the network N is (L

0

; : : : ; L

2d+1

) where L

2i

= X ,

L

2i+1

= Z

i

, for 0 � i < d, and L

2d

= Y

0

, L

2d+1

= Y

1

.



X−comparators Z−comparators 

Z

X

Y

Y −comparators Y −comparators 
0 1

Z

X

Y

Fig. 3. Network N

3;3

. For larity, the Y -omparators are drawn separately.



A set of omparatorsK is symmetri if (R

i

; R

j

) 2 K implies (R

n�1�j

; R

n�1�i

) 2

K. Note that all layers of N are symmetri.

Figure 3 shows a network N

k;m

, for k = m = 3. As m � k, this network

ontains only one layer of Z-omparators Z

0

.

4 Analysis of the Computation of N

m;k

The following theorem is a more detailed version of the theorem stated in the

introdution.

Theorem 1. After T � 4k

2

+ 8mk + 7k + 14m+ 6

k

m

+ 13 steps of the periodi

network N

m;k

all its pairs of olumns are sorted.

We denote N

m;k

by N . By the zero-one priniple, [8℄, it is enough to show this

property for the ase when only zeroes and ones are stored in the registers. We

replae zeroes by negative numbers and ones by positive numbers. These numbers

an inrease their absolute values between the appliations of subsequent layers

in periodi omputation of N , but an not hange their signs. We show that,

after T steps, negative values preeed all positive values within eah pair of

olumns.

Initially, let v(R

0

); : : : v(R

n�1

) be arbitrary sequene of the values from f�1; 1g.

We apply N to this sequene as a periodi network. We all the appliation of

the layer Y

i

(respetively, X ,Z

i

) an Y-step (respetively, X-step, Z-step).

To make the analysis more intuitive, we assume that eah register stores

(besides the value) an unique element. The value of an element e stored in R

i

,

(denoted v(e)) is equal to v(R

i

). If v(e) > 0 then e is positive. Otherwise e

is negative. If just before the appliation of omparator  = (R

i

; R

j

) we have

v(R

i

) > v(R

j

) then during the appliation of  the elements are exhanged

between R

i

and R

j

. If  is from Y

0

or Y

1

then the elements are exhanged also

if v(R

i

) = v(R

j

). If e is a positive (respetively, negative) element ontained in

R

i

or R

j

, before the appliation of , then e wins in  if, after the appliation of

, it ends up in R

j

(respetively, R

i

). Otherwise e loses in .

We all the elements that are stored during the X-steps and Z-steps in the

pairs of olumns P

2i

, for 0 � i < m, right-running elements. The remaining

elements are alled left-running.

Let k

0

= md. (Reall that d = dk=me.) Let Æ = 1=(4k

0

). Note that k

0

Æ < 1.

By ritial omparators we mean the omparators between P

2m�1

and P

0

from

the layer Y

1

. We modify the omputation of N as follows:

{ After eah Z-step, we inrease the values of the positive right-running ele-

ments and derease the values of the negative left-running elements by Æ.

(We all it Æ-inrease.)

{ When a positive right-running (respetively, negative left-running) element

e wins in a ritial omparator, we inrease v(e) to bv(e) + 1 (respetively,

derease v(e) to dv(e) � 1e).



Note that one a positive (respetively, negative) element beomes right-

running (respetively, left-running) it remains right-running (respetively, left-

running) for ever. All the positive left-running and negative right-running ele-

ments have absolute value 1.

Lemma 1. If, during the Z-step t, jv(e)j = l + y

0

Æ, where l and y

0

are nonneg-

ative integers suh that l � 2 and 0 � y

0

< k

0

, then, during t, e an be proessed

only by omparators with height 2

k�1�y

0

.

Let e be a positive element. (A negative element behaves symmetrially.)

Sine v(e) > 1, e is a right-running element during step t. At the moment when

e started being right-running, its value was equal 1. A right-running element

an be Æ-inreased at most k

0

times between its subsequent wins in the ritial

omparators, and k

0

Æ < 1. Thus e reahed the value 2 when it entered P

0

for

the �rst time. Then its value was being inreased by Æ, after eah Z-step (d

times in eah P

2j

), and rounded up to the next integer during its wins in ritial

omparators. The lemma follows from the de�nition of � and Z

i

: The heights

of the Z-omparators from the subsequent Z-layers Z

i

, for 0 � i < d, in the

subsequent pairs of olumns P

2j

, for 0 � j < m, are the dereasing powers of

two. 2

We say that a register M

x;y;z

is l-dense for v if

{ in the ase v > 0: v(M

x;y;z+id2

l

e

) � v, for all i � 0 suh that z + id2

l

e < 2

k

,

and

{ in the ase v < 0: v(M

x;y;z�id2

l

e

) � v for all i � 0 suh that z � id2

l

e � 0.

Note that, for l < 0,\l-dense" means \0-dense". An element is l-dense for v if it

is stored in a register that is l-dense for v.

Lemma 2. If M

x;y;z

is l-dense for v > 0 (respetively, v < 0), then, for 0 <

v

0

� v (respetively, v � v

0

< 0), M

x;y;z

is l-dense for v

0

.

If M

x;y;z

is l-dense for v > 0 (respetively, v < 0), then, for all j � 0

(respetively, j � 0), M

x;y;z+jd2

l

e

is l-dense for v.

If M

x;y;z

is l-dense for v > 0 (respetively, v < 0) and M

x;y;z+b2

l�1



(respe-

tively, M

x;y;z�b2

l�1



) is l-dense for v, then M

x;y;z

is (l � 1)-dense for v.

The properties an be easily derived from the de�nition. 2

Lemma 3. Let L be any layer of N and (M

x;y;z

;M

x

0

;y

0

;z

0

) 2 L.

If M

x;y;z

or M

x

0

;y

0

;z

0

is l-dense for v > 0 (respetively, v < 0), just before an

appliation of L, then M

x

0

;y

0

;z

0

(respetively, M

x;y;z

) is l-dense for v just after

the appliation of L.

If M

x;y;z

and M

x

0

;y

0

;z

0

are l-dense for v, just before the appliation of L, then

M

x;y;z

and M

x

0

;y

0

;z

0

are l-dense for v just after the appliation of L.

Proof. The lemma follows from the fat that, for eah integer i suh that

0 � z + id2

l

e, z

0

+ id2

l

e < 2

k

, the omparator (M

x;y;z+id2

l

e

;M

x

0

;y

0

;z

0

+id2

l

e

) is

also in L. 2



Corollary 1. If an element l-dense for v wins during an appliation of a layer

L of N , then it remains l-dense for v. If it looses to another element l-dense for

v, then it also remains l-dense for v. If it wins in ritial omparator and v > 0

(respetively, v < 0), then it beomes l-dense for bv + 1 (respetively, dv � 1e).

If just before Z-step t, e is right-running positive (respetively, left-running

negative) element l-dense for v > 0 (respetively, v < 0), and, during t, e looses

to another element l-dense for v or wins, then it beomes l-dense for v + Æ

(respetively, v � Æ), after the Æ-inrease following t.

The following lemma states that eah positive element e that was right-

running for a long time is ontained in a dense foot of the elements with the

value v(e) or greater, and an analogial property holds for left-running negative

values.

Lemma 4. Consider the on�guration of N after the Z-step. For nonnegative

integers l,s and y

0

suh that y

0

� k

0

, for eah element e:

If v(e) = l+ 2 + s+ y

0

Æ, then e is (k� l)-dense for l+ 2 + y

0

Æ and, if y

0

> l,

then e is (k � l � 1)-dense for l + 2 + y

0

Æ.

If v(e) = �(l+ 2 + s+ y

0

Æ), then e is (k � l)-dense for �(l+ 2 + y

0

Æ) and, if

y

0

> l, then e is (k � l � 1)-dense for �(l + 2 + y

0

Æ).

Proof. We prove only the �rst part. The seond part is analogial sine all layers

of N are symmetrial. The proof is on indution by l. Let 0 � l < k. Let e be

any element with v(e) = l+2+s+y

0

Æ, for some nonnegative integers s,y

0

, where

y

0

� k

0

. The element e was right-running during eah of the last y

0

Z-steps.

These steps were preeeded by a ritial step t, that inreased v(e) to l + 2 + s.

Let t

i

(respetively, t

0

i

) be the (i + 1)-st X-step (respetively, Z-step) after step

t. Let M

x

i

;y

i

;z

i

(respetively, M

x

0

i

;y

i

;z

0

i

) be the register that stored e just after

t

i

(respetively, t

0

i

). Let v

i

denote the value l + 2 + iÆ. During eah step t

i

and

t

0

i

, all elements e

0

with v(e

0

) � v(e), in the pair of olumns ontaining e, are

(k � l)-dense for v

i

. (For l = 0 it is obvious, sine the \height" of N is 2

k

, and,

for l > 0, it follows from the indution hypothesis and Corollary 1, sine e

0

was

(k� l)-dense for l+ 1 already before t, and, hene, (k� l)-dense for v

0

just after

t.)

Claim (Breaking Claim). For 0 � i � l, just after the X-step t

i

, the registers

M

0;y

i

;z

i

+2

k�i and M

1;y

i

;z

i

+2

k�i are (k � l)-dense for v

i

, if they exist.

We prove the laim by indution on i. For i = 0 it is obvious. (M

0;y

i

;z

i

+2

k and

M

1;y

i

;z

i

+2

k
do not exist.)

Let 0 < i � l. Consider the on�guration just after step t

i�1

. (See Figure

4.) Sine t

i�1

was an X-step, v(M

1;y

i�1

;z

i�1

) � v(e) and, hene, M

1;y

i�1

;z

i�1

is

(k� l)-dense for v

i�1

. Thus, M

1;y

i�1

;z

i�1

+2

k�i is (k� l)-dense for v

i�1

, sine 2

k�i

is multiple of 2

k�l

. By the indution hypothesis of the laim, M

0;y

i�1

;z

i�1

+2

k�i+1

and M

1;y

i�1

;z

i�1

+2

k�i+1 are (k � l)-dense for v

i�1

. Just after the step t

0

i�1

,

M

1;y

i�1

;z

i�1

+2

k�i , and M

1;y

i�1

;z

i�1

+2

k�i+1 remain (k � l)-dense for v

i�1

, sine

they were ompared to the registers M

0;y

i�1

;z

i�1

+2

k�i+1
and M

0;y

i�1

;z

i�1

+2

k�i+2



z
i−1

z
i−1

x=0

z
i−1

+2k − i

x=1

+2k − i

+1

e

Fig. 4. The on�guration after t

i�1

in P

y

i�1

in the registers with Z-oordinates z

i�1

+

j2

k�i

, for 0 � j < 4. (Blak registers are (k � l)-dense for v

i�1

. Arrows denote the

omparators from t

0

i�1

.)

that were (k � l)-dense for v

i�1

. M

0;y

i�1

;z

i�1

+2

k�i+1
remains (k � l)-dense for

v

i�1

. M

0;y

i�1

;z

i�1

+2

k�i also beomes (or remains) (k� l)-dense for v

i�1

, sine it

was ompared to M

1;y

i�1

;z

i�1

. Thus, just after the Z-step t

0

i�1

, for x 2 f0; 1g, the

registers M

0

x

= M

x;y

i�1

;z

0

i�1

+2

k�i are (k�l)-dense for v

i�1

(and for v

i

, after the Æ-

inrease). (Either z

0

i�1

= z

i�1

and M

0

x

= M

x;y

i�1

;z

i�1

+2

k�i , or z

0

i�1

= z

i�1

+2

k�i

and M

0

x

= M

x;y

i�1

;z

i�1

+2

k�i+1
.) If i mod d = 0 then, during the next two Y-steps,

the elements from both M

0

0

and M

0

1

together with the element e are moved \hor-

izontally" to P

2i=d

(wining by the way). Thus, by Corollary 1, just before and

after the X-step t

i

, for x 2 f0; 1g, the registers M

x;y

i

;z

i

+2

k�i are (k � l)-dense

for v

i

. This ompletes the proof of the laim.

The next laim shows how the values v

l

or greater form twie more ondensed

foot below e.

Claim (Condensing Claim). After the Z-step t

0

l

, e is (k� l�1)-dense for v

l

(and

for v

l+1

, after the Æ-inrease).

Consider the on�guration just after X-step t

l

. The registers M

x

l

;y

l

;z

l

and, by

the Breaking Claim, M

0;y

l

;z

l

+2

k�l and M

1;y

l

;z

l

+2

k�l are (k� l)-dense for v

l

. Sine

the last step was an X-step, M

1;y

l

;z

l

is (k � l)-dense for v

l

.

Consider the following senarios of the Z-step t

0

l

(see Figure 5):

1. e remains in M

0;y

l

;z

l

: Then the register M

0;y

l

;z

l

+2

k�l�1 beomes (k� l)-dense

for v

l

, by Lemma 3, sine M

1;y

l

;z

l

was (k� l)-dense for v

l

just before t

0

l

. Thus

e beomes (k � l � 1)-dense for v

l

, by Lemma 2.

2. e is moved from M

1;y

l

;z

l

to M

0;y

l

;z

l

+2

k�l�1 : Then by Corollary 1, e remains

(k � l)-dense for v

l

, and the register M

0;y

l

;z

l

+2

k�l remains (k � l)-dense for

v

l

. Thus e beomes (k � l � 1)-dense for v

l

, by Lemma 2.

3. e remains in M

1;y

l

;z

l

: Then v(e) � v(M

0;y

l

;z

l

+2

k�l�1) � v(M

1;y

l

;z

l

+2

k�l�1)

just before t

0

l

. (The seond inequality is fored by the X-step t

l

). Hene, for

x 2 f0; 1g, R

0

x

= M

x;y

l

;z

l

+2

k�l�1
was (k�l)-dense for v

l

just before t

0

l

. During



e

case 1

z

z
l

z
l

l

+2k −l −1

+2k −l

e

case 4

R’’

R’

R’0

case 3

e

R’1

e

case 2

Fig. 5. The senarios of t

0

l

.

t

0

l

the register R

0

1

is ompared to M

0;y

l

;z

l

+2

k�l . So R

0

1

remains (k � l)-dense

for v

l

. Sine e was ompared to R

0

0

, it also remains (k � l)-dense for v

l

. By

Lemma 2, e is (k � l � 1)-dense for v

l

just after t

0

l

.

4. e is moved from M

0;y

l

;z

l

to R

0

= M

1;y

l

;z

l

�2

k�l�1 : During t

0

l

, R

0

was ompared

to M

x

l

;y

l

;z

l

and R

00

= M

1;y

l

;z

l

was ompared to M

0;y

l

;z

l

+2

k�l�1
that was

(k � l)-dense for v

l

just before t

0

l

, by the Breaking Claim applied to the

element in R

0

. Thus, by Lemma 3, the registers R

0

and R

00

remain (k � l)-

dense for v

l

just after t

0

l

. By Lemma 2, R

0

is (k� l�1)-dense for v

l

just after

t

0

l

.

Sine there are no other senarios for e and the subsequent Æ-inrease is the same

for all positive elements in P

y

l

, the proof of the laim is ompleted.

By Corollary 1, the element e remains (k� l� 1)-dense for v

i

, for i > l, sine

other elements in its pair of olumns with values v(e) or greater are now also

(k � l� 1)-dense for v

i

, and during Y-steps e is wining (right-running).

For l � k, \(k � l)-dense for v" means \0-dense for v". The element e with

v(e) = k + 1 + kÆ is 0-dense for k + 1 + kÆ. All the positive elements below it

inrease their values at the same rate as e. Thus, when v(e) reahes k + 2, it

beomes 0-dense for k + 2. By repeating this reasoning for the values k + 2 and

greater we omplete the proof of the Lemma 4. 2

By Lemma 4, whenever any element e reahes the value k + 2 (in the pair

of olumns P

0

) it is 0-dense for k + 2. Then, by the Breaking Claim, after the

X-step after e reahes the value k + 2 + kÆ, e is stored in a register M

x;y;z

suh

that M

0;y;z+1

is also 0-dense for k + 2 + kÆ. Hene, all the elements following e

in its pair of olumns are 0-dense for k+ 2 +kÆ. By Corollary 1, this property of

e remains valid forever. Sine the network is symmetri, we have the following

orollary:

Corollary 2. Consider a on�guration in a pair of olumns P

y

just after an

X-step.



If, for some register R

i

2 P

y

, v(R

i

) � k + 2 + kÆ, then, for all R

j

2 P

y

suh

that j � i, we have v(R

j

) � k + 2 + kÆ.

If, for some register R

i

2 P

y

, v(R

i

) � �(k + 2 + kÆ), then, for all R

j

2 P

y

suh that j � i, we have v(R

j

) � �(k + 2 + kÆ).

Now, it is enough to show that, after the last X-step of the �rst T steps, all

right-running positive and all left-running negative elements have the absolute

values k+2+kÆ or greater. Then in eah pair of olumns ontaining right-running

elements, the �1s are above the positive values, and in eah pair of olumns

ontaining left-running elements, the 1s are below the negative elements.

Lemma 5. If, after m Y-steps, and the next k

0

(k+ 1) + k Z-steps, and the next

X-step, e is a left-running positive (respetively, right-running negative) element,

then e remains left-running (respetively, right-running) forever.

Let e be positive. (The proof for e negative is analogial). During eah of

the �rst m Y-steps, e was ompared with the positive right-running elements.

For t � 0, let y

t

be suh that e was in P

y

t

just after the (t + 1)st Y-step. For

0 � i < m, let S

i

(respetively, S

0

i

) denote the set of positive elements that were

in P

y

i

(respetively, P

(y

i

+1) mod 2m

) just after (i + 1)st Y-step. Let S

00

be the

set of negative elements in P

y

m�1

just after the mth Y-step. For 0 � i < m,

jS

m�1

j = 2 � 2

k

� jS

00

j � jS

0

i

j, sine S

m�1

� S

i

and jS

i

j � jS

0

i

j. Note that, for all

t � m, during the (t+ 1)st Y-step, the pair of olumns ontaining (left-running)

S

00

is ompared to the pair of olumns ontaining (right-running) S

0

t mod m

.

After the next k

0

(k+ 1) + k Z-steps all the elements of S

00

have values �(k+

2 + kÆ) or less, and, for 0 � i < k, the elements of S

0

i

have values k + 2 + kÆ or

greater (they have walked at least k + 1 times through the ritial omparators

and then inreased their values by Æ at least k times during Z-steps). Let t

0

be

the next X-step. Let t be any Y-step after t

0

suh that e is still in the same

pair of olumns as S

00

. Before the step t, the elements in S

00

and eah S

0

i

were

proessed by an X-step after their absolute values had reahed k+2+kÆ. Hene,

by the Corollary 2, just before the Y-step t, all the �nal jS

0

i

j registers of the pair

of olumns ontaining S

0

i

store the values k + 2 + kÆ or greater and the pair

of olumns ontaining S

00

has all the initial jS

00

j registers �lled with the values

�(k + 2 + kÆ) or less. Thus, e is stored in one of its remaining 2 � 2

k

� jS

00

j �nal

registers and, during the Y-step t, e is ompared with a value k + 2 + kÆ or

greater and it must remain left-running. 2

The depth of N is 2d + 2. Eah iteration of N performs two Y-steps as its

last steps. Thus the �rst m Y-steps are performed during the �rst (2d+2)dm=2e

steps. Eah iteration of N performs d Z-steps. Thus, the next k

0

(k + 1) + k Z-

steps are performed during the next (2d+ 2)d(k

0

(k+ 1) + k)=de steps. After the

next X-step, t

0

, by Lemma 5, the set S of positive right-running and negative

left-running elements remains �xed. After the next d(k

0

(k+ 1) +k)=de iterations

absolute values of elements in S are k + 2 + kÆ or greater. (t

0

was the �rst step

of these iterations.) After the �rst X-step of the next iteration, by Corollary 2,

in all pairs of olumns the negative values preeed the positive values. We an

now replae negative values with zeroes, positive values with ones, and, by the



zero-one priniple, we have all the pairs of olumns sorted. (Note that, by the

de�nition of N , one all the pairs of olumns are sorted, they remain sorted for

ever.)

We an estimate the number of steps by T � (2d+2)(dm=2e+2d(k

0

(k+1)+

k)=de) + 1. Reall that d = dk=me. It an be veri�ed that T � 4k

2

+ 8mk+ 7k+

14m+ 6

k

m

+ 13. This ompletes the proof of Theorem 1.

Remarks: Note that the network N

1;k

an be simpli�ed to a periodi sorting

network of depth 2 logn, by removing the Y-steps and merging P

0

with P

1

.

However, better networks exist, [3℄, with depth logn that sort in logn iterations.

Note also that the arrangement of the registers in the matrix M an be arbitrary.

We an selet the one that is most suitable for the subsequent merging.
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