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Abstra
t. We present a family of periodi
 
omparator networks that

transform the input so that it 
onsists of a few sorted subsequen
es.

The depths of the networks range from 4 to 2 log n while the number of

sorted subsequen
es ranges from 2 log n to 2. They work in time 
 log

2

n+

O(log n) with 4 � 
 � 12, and the remaining 
onstants are also suitable

for pra
ti
al appli
ations. So far, known periodi
 sorting networks of a


onstant depth that run in time O(log

2

n) (a periodi
 version of AKS

network [7℄) are impra
ti
al be
ause of 
omplex stru
ture and very large


onstant fa
tor hidden by big \Oh".

Keywords: sorting, 
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1 Introdu
tion

Comparator is a simple devi
e 
apable of sorting two elements. Many 
ompara-

tors 
an be 
onne
ted together to form a 
omparator network. This way we get

the 
lassi
al framework for sorting algorithms. Optimal arranging the 
ompara-

tors turned out to be a 
hallenge. The main 
omplexity measures of 
omparator

networks are time 
omplexity (depth or number of steps) and the number of


omparators. The most famous sorting network is AKS network with asymptot-

i
ally optimal depth O(log n) [1℄, however the big 
onstant hidden by big \Oh"

makes it impra
ti
al. The Bat
her networks of depth �

1

2

log

2

n [2℄, seem to be

very attra
tive for pra
ti
al appli
ations.

A periodi
 network is repeatedly used on the intermediate results until the

output be
omes sorted, thus the same 
omparators are reused many times. In this


ase, the time 
omplexity is the depth of the network multiplied by the number

of iterations. The main advantage of periodi
ity is the redu
tion of the amount of

hardware (
omparators) needed for the realization of the sorting algorithm, with

a very simple 
ontrol me
hanism providing the output of one iteration as the

input for the next iteration. Dowd et al, [3℄, redu
ed the number of 
omparators

from 
(n log

2

n) to

1

2

n logn, while keeping the sorting time log

2

n, by the

use of a periodi
 network of depth logn. (The networks of depth d have at most

dn=2 
omparators.) There are some periodi
 sorting networks of a 
onstant depth

([10℄, [5℄, [7℄). In [7℄, 
onstant depth networks with time 
omplexity O(log

2

n) are

?
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obtained by \periodi�
ation" of the AKS network, and more pra
ti
al solutions

with time 
omplexity O(log

3

n), are obtained by \periodi�
ation" of the Bat
her

network. On the other hand there is not known any !(logn) lower bound on the

time 
omplexity of periodi
 sorting networks of 
onstant depth. Closing the gap

between the known upper bound of O(log

2

n) and the trivial general lower bound


(log n) seems to be a very hard problem.

Periodi
 networks of 
onstant depth 
an also be used for simpler tasks, su
h

as merging sorted sequen
es [6℄, or resorting sequen
es with few values modi�ed

[4℄.

1.1 New Results

We assume that the values are stored in the registers and the only allowed

operations are 
ompare-ex
hange operations (appli
ations of 
omparators) on

the pairs of registers. Su
h an operation takes the two values stored in the

pair of registers and stores the lower value in the �rst register and the greater

value in the se
ond register. (This interpretation di�ers from the one presented

for instan
e in [8℄ but is more useful when periodi
 
omparator networks are


on
erned.)

We present a family of periodi
 
omparator networks N

m;k

. The input size

of N

m;k

is n = 4m2

k

. The depth of N

m;k

is 2dk=me + 2. In Se
tion 4 we prove

the following theorem.

Theorem. The periodi
 network N

m;k

transforms the input into 2m sorted sub-

sequen
es of length n=(2m) in time 4k

2

+ 8km+O(k +m).

For example, the network N

1;k

is a network of depth � 2 logn that produ
es

2 sorted sequen
es in time � 4 log

2

n + O(log n). On the other hand, N

k;k

is a

network of depth 4 that transforms the input into � 2 logn sorted sequen
es in

time � 12 log

2

n + O(log n). Due to the large 
onstants in the known periodi



onstant depth networks sorting in time O(log

2

n), [7℄, it 
ould be interesting

alternative to use N

k;k

to produ
e very mu
h ordered (although not 
ompletely

sorted) output.

The output produ
ed by N

m;k


an be �nally sorted by a network merging 2m

sequen
es. This 
an be performed by the very eÆ
ient multiway merge sorting

networks [9℄. It is an interesting problem to �nd eÆ
ient periodi
 network of


onstant depth that merges multiple sorted sequen
es. The periodi
 networks

of 
onstant depth that merge two sorted sequen
es in time O(log n) are already

known [6℄.

As N

m;k

outputs multiple sorted sequen
es, we 
all it a multisorting network.

Mu
h simpler multisorting networks of 
onstant depth exist if some additional

operations are allowed (su
h as permutations of the elements in the registers

between the iterations). However, we 
onsider only the 
ase restri
ted to the


ompare-ex
hange operations.



2 Preliminaries

By a 
omparator network we mean a set of registers R

0

; : : : ; R

n�1

together with

a �nite sequen
e of layers of 
omparators. Every moment a register R

i


ontains

a single value (denoted by v(R

i

)) from some totally ordered set, say IN. We say

that the network stores a sequen
e v(R

0

); : : : ; v(R

n�1

). A subset S of registers

is sorted if for all R

i

, R

j

in S, i < j implies that v(R

i

) � v(R

j

). A 
omparator

is denoted by an ordered pair of registers (R

i

; R

j

). If v(R

i

) = x and v(R

j

) = y

before an appli
ation of the 
omparator (R

i

; R

j

), then v(R

i

) = minfx; yg and

v(R

j

) = maxfx; yg after the appli
ation of (R

i

; R

j

). A set of 
omparators L

forms a layer if ea
h register is 
ontained in at most one of the 
omparators

of L. So all the 
omparators of a layer 
an be applied simultaneously. We 
all

su
h appli
ation a step. The depth of the network is the number of its layers. An

input is the initial value of the sequen
e v(R

0

); : : : ; v(R

n�1

). An output of the

network N is the sequen
e v(R

0

); : : : ; v(R

n�1

) obtained after appli
ation of all

its layers (appli
ation of N) on some initial input sequen
e. We 
an iterate the

network's appli
ation, by applying it to the output of its previous appli
ation.

We 
all su
h network a periodi
 network. The time 
omplexity of the periodi


network is the number of steps performed in all iterations.

3 De�nition of the Network N

m;k

We de�ne a periodi
 network N

m;k

for positive integers m and k. For the sake of

simpli
ity we �x the values m and k and denote N

m;k

by N . Network N 
ontains

n registers R

0

; : : : ; R

n�1

, where n = 4m �2

k

. It will be useful to imagine that the

registers are arranged in a three-dimensional matrix M of size 2� 2m� 2

k

. For

0 � x � 1, 0 � y � 2m� 1 and 0 � z � 2

k

� 1, the element M

x;y;z

is a register

R

i

su
h that i = x + 2y + 4mz. For the intuitions, we assume that Z and Y


oordinates are in
reasing downwards and rightwards respe
tively. By a 
olumn

C

x;y

we mean a subset of registers M

x;y;z

with 0 � z < 2

k

. P

y

= C

0;y

[C

1;y

is a

pair of 
olumns. An Z-sli
e is a subset of registers with the same Z 
oordinate.

Let d = dk=me. We de�ne the sets of 
omparators X , Y

0

, Y

1

, and Z

i

, for

0 � i < d, as follows. (Comparators of X , Y

j

and Z

i

are 
alled X-
omparators,

Y -
omparators and Z-
omparators, respe
tively.) The 
omparators of X , Y

0

and

Y

1

a
t in ea
h Z-sli
e separately (see Figure 1). Set X 
ontains 
omparators

(M

0;y;z

;M

1;y;z

), for all y and z. Let Y be an auxiliary set of all 
omparators

(M

x;y;z

;M

x;y

0

;z

) su
h that y

0

= (y + 1) mod 2m. Y

0


ontains all 
omparators

(M

x;y;z

;M

x;y

0

;z

) from Y , su
h that y is even. Y

1


onsists of these 
omparators

from Y that are not in Y

0

. Note that the layer Y

1


ontains nonstandard 
om-

parators (M

x;2m�1;z

;M

x;0;z

) (i.e. 
omparators that pla
e the greater value in

the register with lower index).

In order to des
ribe Z

i

we de�ne a matrix � of size d � 2m (with the rows

indexed by the �rst 
oordinate) su
h that, for 0 � i < d and 0 � j < 2m:

{ if j is even then �

i;j

= d � j=2 + i,

{ if j is odd �

i;j

= �

i;2m�1�j

.



X

Y

Fig. 1. Comparator 
onne
tions within a single Z-sli
e. Dotted (respe
tively, dashed

and solid) arrows represent 
omparators from X (respe
tively, Y

0

and Y

1

).

For example, for m = 4 and 4 < k � 8, � is the following matrix:

�

0 6 2 4 4 2 6 0

1 7 3 5 5 3 7 1

�

:

For 0 � i < d, Z

i


onsists of 
omparators (M

1;y;z

;M

0;y;z

0

) su
h that 0 � y < 2m

and z

0

= z + 2

k�1��

i;y

provided that 0 � z, z

0

< 2

k

and k � 1 � �

i;y

� 0. By a

height of the 
omparator (M

x;y;z

;M

x

0

;y

0

;z

0

) we mean z

0

�z. Note that ea
h single

Z-
omparator is 
ontained within a single pair of 
olumns and all 
omparators

of Z

i


ontained in the same pair of 
olumns are are of the same height whi
h

is a power of two. All Z-
omparators of height 2

k�1

; 2

k�2

; : : : ; 2

k�d

(whi
h are

from Z

0

; Z

1

; : : : ; Z

d�1

, respe
tively) are pla
ed in the pairs of 
olumns P

0

and

P

2m�1

. All Z-
omparators of height 2

k�1�d

; : : : ; 2

k�2d

(from Z

0

; : : : ; Z

d�1

) are

pla
ed in P

2

and P

2m�3

. And so on. Generally, for 0 � i < d and 0 � y < m, the

height of all 
omparators of Z

i


ontained in P

2y

and in P

2m�1�2y

is 2

k�1�dy�i

.

height 4

X

Z

X

Z
height 2

X

Z
height 1

Fig. 2. Z-
omparators of di�erent heights within the pairs of 
olumns, for k = 3.

The sequen
e of layers of the network N is (L

0

; : : : ; L

2d+1

) where L

2i

= X ,

L

2i+1

= Z

i

, for 0 � i < d, and L

2d

= Y

0

, L

2d+1

= Y

1

.



X−comparators Z−comparators 

Z

X

Y

Y −comparators Y −comparators 
0 1

Z

X

Y

Fig. 3. Network N

3;3

. For 
larity, the Y -
omparators are drawn separately.



A set of 
omparatorsK is symmetri
 if (R

i

; R

j

) 2 K implies (R

n�1�j

; R

n�1�i

) 2

K. Note that all layers of N are symmetri
.

Figure 3 shows a network N

k;m

, for k = m = 3. As m � k, this network


ontains only one layer of Z-
omparators Z

0

.

4 Analysis of the Computation of N

m;k

The following theorem is a more detailed version of the theorem stated in the

introdu
tion.

Theorem 1. After T � 4k

2

+ 8mk + 7k + 14m+ 6

k

m

+ 13 steps of the periodi


network N

m;k

all its pairs of 
olumns are sorted.

We denote N

m;k

by N . By the zero-one prin
iple, [8℄, it is enough to show this

property for the 
ase when only zeroes and ones are stored in the registers. We

repla
e zeroes by negative numbers and ones by positive numbers. These numbers


an in
rease their absolute values between the appli
ations of subsequent layers

in periodi
 
omputation of N , but 
an not 
hange their signs. We show that,

after T steps, negative values pre
eed all positive values within ea
h pair of


olumns.

Initially, let v(R

0

); : : : v(R

n�1

) be arbitrary sequen
e of the values from f�1; 1g.

We apply N to this sequen
e as a periodi
 network. We 
all the appli
ation of

the layer Y

i

(respe
tively, X ,Z

i

) an Y-step (respe
tively, X-step, Z-step).

To make the analysis more intuitive, we assume that ea
h register stores

(besides the value) an unique element. The value of an element e stored in R

i

,

(denoted v(e)) is equal to v(R

i

). If v(e) > 0 then e is positive. Otherwise e

is negative. If just before the appli
ation of 
omparator 
 = (R

i

; R

j

) we have

v(R

i

) > v(R

j

) then during the appli
ation of 
 the elements are ex
hanged

between R

i

and R

j

. If 
 is from Y

0

or Y

1

then the elements are ex
hanged also

if v(R

i

) = v(R

j

). If e is a positive (respe
tively, negative) element 
ontained in

R

i

or R

j

, before the appli
ation of 
, then e wins in 
 if, after the appli
ation of


, it ends up in R

j

(respe
tively, R

i

). Otherwise e loses in 
.

We 
all the elements that are stored during the X-steps and Z-steps in the

pairs of 
olumns P

2i

, for 0 � i < m, right-running elements. The remaining

elements are 
alled left-running.

Let k

0

= md. (Re
all that d = dk=me.) Let Æ = 1=(4k

0

). Note that k

0

Æ < 1.

By 
riti
al 
omparators we mean the 
omparators between P

2m�1

and P

0

from

the layer Y

1

. We modify the 
omputation of N as follows:

{ After ea
h Z-step, we in
rease the values of the positive right-running ele-

ments and de
rease the values of the negative left-running elements by Æ.

(We 
all it Æ-in
rease.)

{ When a positive right-running (respe
tively, negative left-running) element

e wins in a 
riti
al 
omparator, we in
rease v(e) to bv(e) + 1
 (respe
tively,

de
rease v(e) to dv(e) � 1e).



Note that on
e a positive (respe
tively, negative) element be
omes right-

running (respe
tively, left-running) it remains right-running (respe
tively, left-

running) for ever. All the positive left-running and negative right-running ele-

ments have absolute value 1.

Lemma 1. If, during the Z-step t, jv(e)j = l + y

0

Æ, where l and y

0

are nonneg-

ative integers su
h that l � 2 and 0 � y

0

< k

0

, then, during t, e 
an be pro
essed

only by 
omparators with height 2

k�1�y

0

.

Let e be a positive element. (A negative element behaves symmetri
ally.)

Sin
e v(e) > 1, e is a right-running element during step t. At the moment when

e started being right-running, its value was equal 1. A right-running element


an be Æ-in
reased at most k

0

times between its subsequent wins in the 
riti
al


omparators, and k

0

Æ < 1. Thus e rea
hed the value 2 when it entered P

0

for

the �rst time. Then its value was being in
reased by Æ, after ea
h Z-step (d

times in ea
h P

2j

), and rounded up to the next integer during its wins in 
riti
al


omparators. The lemma follows from the de�nition of � and Z

i

: The heights

of the Z-
omparators from the subsequent Z-layers Z

i

, for 0 � i < d, in the

subsequent pairs of 
olumns P

2j

, for 0 � j < m, are the de
reasing powers of

two. 2

We say that a register M

x;y;z

is l-dense for v if

{ in the 
ase v > 0: v(M

x;y;z+id2

l

e

) � v, for all i � 0 su
h that z + id2

l

e < 2

k

,

and

{ in the 
ase v < 0: v(M

x;y;z�id2

l

e

) � v for all i � 0 su
h that z � id2

l

e � 0.

Note that, for l < 0,\l-dense" means \0-dense". An element is l-dense for v if it

is stored in a register that is l-dense for v.

Lemma 2. If M

x;y;z

is l-dense for v > 0 (respe
tively, v < 0), then, for 0 <

v

0

� v (respe
tively, v � v

0

< 0), M

x;y;z

is l-dense for v

0

.

If M

x;y;z

is l-dense for v > 0 (respe
tively, v < 0), then, for all j � 0

(respe
tively, j � 0), M

x;y;z+jd2

l

e

is l-dense for v.

If M

x;y;z

is l-dense for v > 0 (respe
tively, v < 0) and M

x;y;z+b2

l�1




(respe
-

tively, M

x;y;z�b2

l�1




) is l-dense for v, then M

x;y;z

is (l � 1)-dense for v.

The properties 
an be easily derived from the de�nition. 2

Lemma 3. Let L be any layer of N and (M

x;y;z

;M

x

0

;y

0

;z

0

) 2 L.

If M

x;y;z

or M

x

0

;y

0

;z

0

is l-dense for v > 0 (respe
tively, v < 0), just before an

appli
ation of L, then M

x

0

;y

0

;z

0

(respe
tively, M

x;y;z

) is l-dense for v just after

the appli
ation of L.

If M

x;y;z

and M

x

0

;y

0

;z

0

are l-dense for v, just before the appli
ation of L, then

M

x;y;z

and M

x

0

;y

0

;z

0

are l-dense for v just after the appli
ation of L.

Proof. The lemma follows from the fa
t that, for ea
h integer i su
h that

0 � z + id2

l

e, z

0

+ id2

l

e < 2

k

, the 
omparator (M

x;y;z+id2

l

e

;M

x

0

;y

0

;z

0

+id2

l

e

) is

also in L. 2



Corollary 1. If an element l-dense for v wins during an appli
ation of a layer

L of N , then it remains l-dense for v. If it looses to another element l-dense for

v, then it also remains l-dense for v. If it wins in 
riti
al 
omparator and v > 0

(respe
tively, v < 0), then it be
omes l-dense for bv + 1
 (respe
tively, dv � 1e).

If just before Z-step t, e is right-running positive (respe
tively, left-running

negative) element l-dense for v > 0 (respe
tively, v < 0), and, during t, e looses

to another element l-dense for v or wins, then it be
omes l-dense for v + Æ

(respe
tively, v � Æ), after the Æ-in
rease following t.

The following lemma states that ea
h positive element e that was right-

running for a long time is 
ontained in a dense foot of the elements with the

value v(e) or greater, and an analogi
al property holds for left-running negative

values.

Lemma 4. Consider the 
on�guration of N after the Z-step. For nonnegative

integers l,s and y

0

su
h that y

0

� k

0

, for ea
h element e:

If v(e) = l+ 2 + s+ y

0

Æ, then e is (k� l)-dense for l+ 2 + y

0

Æ and, if y

0

> l,

then e is (k � l � 1)-dense for l + 2 + y

0

Æ.

If v(e) = �(l+ 2 + s+ y

0

Æ), then e is (k � l)-dense for �(l+ 2 + y

0

Æ) and, if

y

0

> l, then e is (k � l � 1)-dense for �(l + 2 + y

0

Æ).

Proof. We prove only the �rst part. The se
ond part is analogi
al sin
e all layers

of N are symmetri
al. The proof is on indu
tion by l. Let 0 � l < k. Let e be

any element with v(e) = l+2+s+y

0

Æ, for some nonnegative integers s,y

0

, where

y

0

� k

0

. The element e was right-running during ea
h of the last y

0

Z-steps.

These steps were pre
eeded by a 
riti
al step t, that in
reased v(e) to l + 2 + s.

Let t

i

(respe
tively, t

0

i

) be the (i + 1)-st X-step (respe
tively, Z-step) after step

t. Let M

x

i

;y

i

;z

i

(respe
tively, M

x

0

i

;y

i

;z

0

i

) be the register that stored e just after

t

i

(respe
tively, t

0

i

). Let v

i

denote the value l + 2 + iÆ. During ea
h step t

i

and

t

0

i

, all elements e

0

with v(e

0

) � v(e), in the pair of 
olumns 
ontaining e, are

(k � l)-dense for v

i

. (For l = 0 it is obvious, sin
e the \height" of N is 2

k

, and,

for l > 0, it follows from the indu
tion hypothesis and Corollary 1, sin
e e

0

was

(k� l)-dense for l+ 1 already before t, and, hen
e, (k� l)-dense for v

0

just after

t.)

Claim (Breaking Claim). For 0 � i � l, just after the X-step t

i

, the registers

M

0;y

i

;z

i

+2

k�i and M

1;y

i

;z

i

+2

k�i are (k � l)-dense for v

i

, if they exist.

We prove the 
laim by indu
tion on i. For i = 0 it is obvious. (M

0;y

i

;z

i

+2

k and

M

1;y

i

;z

i

+2

k
do not exist.)

Let 0 < i � l. Consider the 
on�guration just after step t

i�1

. (See Figure

4.) Sin
e t

i�1

was an X-step, v(M

1;y

i�1

;z

i�1

) � v(e) and, hen
e, M

1;y

i�1

;z

i�1

is

(k� l)-dense for v

i�1

. Thus, M

1;y

i�1

;z

i�1

+2

k�i is (k� l)-dense for v

i�1

, sin
e 2

k�i

is multiple of 2

k�l

. By the indu
tion hypothesis of the 
laim, M

0;y

i�1

;z

i�1

+2

k�i+1

and M

1;y

i�1

;z

i�1

+2

k�i+1 are (k � l)-dense for v

i�1

. Just after the step t

0

i�1

,

M

1;y

i�1

;z

i�1

+2

k�i , and M

1;y

i�1

;z

i�1

+2

k�i+1 remain (k � l)-dense for v

i�1

, sin
e

they were 
ompared to the registers M

0;y

i�1

;z

i�1

+2

k�i+1
and M

0;y

i�1

;z

i�1

+2

k�i+2



z
i−1

z
i−1

x=0

z
i−1

+2k − i

x=1

+2k − i

+1

e

Fig. 4. The 
on�guration after t

i�1

in P

y

i�1

in the registers with Z-
oordinates z

i�1

+

j2

k�i

, for 0 � j < 4. (Bla
k registers are (k � l)-dense for v

i�1

. Arrows denote the


omparators from t

0

i�1

.)

that were (k � l)-dense for v

i�1

. M

0;y

i�1

;z

i�1

+2

k�i+1
remains (k � l)-dense for

v

i�1

. M

0;y

i�1

;z

i�1

+2

k�i also be
omes (or remains) (k� l)-dense for v

i�1

, sin
e it

was 
ompared to M

1;y

i�1

;z

i�1

. Thus, just after the Z-step t

0

i�1

, for x 2 f0; 1g, the

registers M

0

x

= M

x;y

i�1

;z

0

i�1

+2

k�i are (k�l)-dense for v

i�1

(and for v

i

, after the Æ-

in
rease). (Either z

0

i�1

= z

i�1

and M

0

x

= M

x;y

i�1

;z

i�1

+2

k�i , or z

0

i�1

= z

i�1

+2

k�i

and M

0

x

= M

x;y

i�1

;z

i�1

+2

k�i+1
.) If i mod d = 0 then, during the next two Y-steps,

the elements from both M

0

0

and M

0

1

together with the element e are moved \hor-

izontally" to P

2i=d

(wining by the way). Thus, by Corollary 1, just before and

after the X-step t

i

, for x 2 f0; 1g, the registers M

x;y

i

;z

i

+2

k�i are (k � l)-dense

for v

i

. This 
ompletes the proof of the 
laim.

The next 
laim shows how the values v

l

or greater form twi
e more 
ondensed

foot below e.

Claim (Condensing Claim). After the Z-step t

0

l

, e is (k� l�1)-dense for v

l

(and

for v

l+1

, after the Æ-in
rease).

Consider the 
on�guration just after X-step t

l

. The registers M

x

l

;y

l

;z

l

and, by

the Breaking Claim, M

0;y

l

;z

l

+2

k�l and M

1;y

l

;z

l

+2

k�l are (k� l)-dense for v

l

. Sin
e

the last step was an X-step, M

1;y

l

;z

l

is (k � l)-dense for v

l

.

Consider the following s
enarios of the Z-step t

0

l

(see Figure 5):

1. e remains in M

0;y

l

;z

l

: Then the register M

0;y

l

;z

l

+2

k�l�1 be
omes (k� l)-dense

for v

l

, by Lemma 3, sin
e M

1;y

l

;z

l

was (k� l)-dense for v

l

just before t

0

l

. Thus

e be
omes (k � l � 1)-dense for v

l

, by Lemma 2.

2. e is moved from M

1;y

l

;z

l

to M

0;y

l

;z

l

+2

k�l�1 : Then by Corollary 1, e remains

(k � l)-dense for v

l

, and the register M

0;y

l

;z

l

+2

k�l remains (k � l)-dense for

v

l

. Thus e be
omes (k � l � 1)-dense for v

l

, by Lemma 2.

3. e remains in M

1;y

l

;z

l

: Then v(e) � v(M

0;y

l

;z

l

+2

k�l�1) � v(M

1;y

l

;z

l

+2

k�l�1)

just before t

0

l

. (The se
ond inequality is for
ed by the X-step t

l

). Hen
e, for

x 2 f0; 1g, R

0

x

= M

x;y

l

;z

l

+2

k�l�1
was (k�l)-dense for v

l

just before t

0

l

. During



e

case 1

z

z
l

z
l

l

+2k −l −1

+2k −l

e

case 4

R’’

R’

R’0

case 3

e

R’1

e

case 2

Fig. 5. The s
enarios of t

0

l

.

t

0

l

the register R

0

1

is 
ompared to M

0;y

l

;z

l

+2

k�l . So R

0

1

remains (k � l)-dense

for v

l

. Sin
e e was 
ompared to R

0

0

, it also remains (k � l)-dense for v

l

. By

Lemma 2, e is (k � l � 1)-dense for v

l

just after t

0

l

.

4. e is moved from M

0;y

l

;z

l

to R

0

= M

1;y

l

;z

l

�2

k�l�1 : During t

0

l

, R

0

was 
ompared

to M

x

l

;y

l

;z

l

and R

00

= M

1;y

l

;z

l

was 
ompared to M

0;y

l

;z

l

+2

k�l�1
that was

(k � l)-dense for v

l

just before t

0

l

, by the Breaking Claim applied to the

element in R

0

. Thus, by Lemma 3, the registers R

0

and R

00

remain (k � l)-

dense for v

l

just after t

0

l

. By Lemma 2, R

0

is (k� l�1)-dense for v

l

just after

t

0

l

.

Sin
e there are no other s
enarios for e and the subsequent Æ-in
rease is the same

for all positive elements in P

y

l

, the proof of the 
laim is 
ompleted.

By Corollary 1, the element e remains (k� l� 1)-dense for v

i

, for i > l, sin
e

other elements in its pair of 
olumns with values v(e) or greater are now also

(k � l� 1)-dense for v

i

, and during Y-steps e is wining (right-running).

For l � k, \(k � l)-dense for v" means \0-dense for v". The element e with

v(e) = k + 1 + kÆ is 0-dense for k + 1 + kÆ. All the positive elements below it

in
rease their values at the same rate as e. Thus, when v(e) rea
hes k + 2, it

be
omes 0-dense for k + 2. By repeating this reasoning for the values k + 2 and

greater we 
omplete the proof of the Lemma 4. 2

By Lemma 4, whenever any element e rea
hes the value k + 2 (in the pair

of 
olumns P

0

) it is 0-dense for k + 2. Then, by the Breaking Claim, after the

X-step after e rea
hes the value k + 2 + kÆ, e is stored in a register M

x;y;z

su
h

that M

0;y;z+1

is also 0-dense for k + 2 + kÆ. Hen
e, all the elements following e

in its pair of 
olumns are 0-dense for k+ 2 +kÆ. By Corollary 1, this property of

e remains valid forever. Sin
e the network is symmetri
, we have the following


orollary:

Corollary 2. Consider a 
on�guration in a pair of 
olumns P

y

just after an

X-step.



If, for some register R

i

2 P

y

, v(R

i

) � k + 2 + kÆ, then, for all R

j

2 P

y

su
h

that j � i, we have v(R

j

) � k + 2 + kÆ.

If, for some register R

i

2 P

y

, v(R

i

) � �(k + 2 + kÆ), then, for all R

j

2 P

y

su
h that j � i, we have v(R

j

) � �(k + 2 + kÆ).

Now, it is enough to show that, after the last X-step of the �rst T steps, all

right-running positive and all left-running negative elements have the absolute

values k+2+kÆ or greater. Then in ea
h pair of 
olumns 
ontaining right-running

elements, the �1s are above the positive values, and in ea
h pair of 
olumns


ontaining left-running elements, the 1s are below the negative elements.

Lemma 5. If, after m Y-steps, and the next k

0

(k+ 1) + k Z-steps, and the next

X-step, e is a left-running positive (respe
tively, right-running negative) element,

then e remains left-running (respe
tively, right-running) forever.

Let e be positive. (The proof for e negative is analogi
al). During ea
h of

the �rst m Y-steps, e was 
ompared with the positive right-running elements.

For t � 0, let y

t

be su
h that e was in P

y

t

just after the (t + 1)st Y-step. For

0 � i < m, let S

i

(respe
tively, S

0

i

) denote the set of positive elements that were

in P

y

i

(respe
tively, P

(y

i

+1) mod 2m

) just after (i + 1)st Y-step. Let S

00

be the

set of negative elements in P

y

m�1

just after the mth Y-step. For 0 � i < m,

jS

m�1

j = 2 � 2

k

� jS

00

j � jS

0

i

j, sin
e S

m�1

� S

i

and jS

i

j � jS

0

i

j. Note that, for all

t � m, during the (t+ 1)st Y-step, the pair of 
olumns 
ontaining (left-running)

S

00

is 
ompared to the pair of 
olumns 
ontaining (right-running) S

0

t mod m

.

After the next k

0

(k+ 1) + k Z-steps all the elements of S

00

have values �(k+

2 + kÆ) or less, and, for 0 � i < k, the elements of S

0

i

have values k + 2 + kÆ or

greater (they have walked at least k + 1 times through the 
riti
al 
omparators

and then in
reased their values by Æ at least k times during Z-steps). Let t

0

be

the next X-step. Let t be any Y-step after t

0

su
h that e is still in the same

pair of 
olumns as S

00

. Before the step t, the elements in S

00

and ea
h S

0

i

were

pro
essed by an X-step after their absolute values had rea
hed k+2+kÆ. Hen
e,

by the Corollary 2, just before the Y-step t, all the �nal jS

0

i

j registers of the pair

of 
olumns 
ontaining S

0

i

store the values k + 2 + kÆ or greater and the pair

of 
olumns 
ontaining S

00

has all the initial jS

00

j registers �lled with the values

�(k + 2 + kÆ) or less. Thus, e is stored in one of its remaining 2 � 2

k

� jS

00

j �nal

registers and, during the Y-step t, e is 
ompared with a value k + 2 + kÆ or

greater and it must remain left-running. 2

The depth of N is 2d + 2. Ea
h iteration of N performs two Y-steps as its

last steps. Thus the �rst m Y-steps are performed during the �rst (2d+2)dm=2e

steps. Ea
h iteration of N performs d Z-steps. Thus, the next k

0

(k + 1) + k Z-

steps are performed during the next (2d+ 2)d(k

0

(k+ 1) + k)=de steps. After the

next X-step, t

0

, by Lemma 5, the set S of positive right-running and negative

left-running elements remains �xed. After the next d(k

0

(k+ 1) +k)=de iterations

absolute values of elements in S are k + 2 + kÆ or greater. (t

0

was the �rst step

of these iterations.) After the �rst X-step of the next iteration, by Corollary 2,

in all pairs of 
olumns the negative values pre
eed the positive values. We 
an

now repla
e negative values with zeroes, positive values with ones, and, by the



zero-one prin
iple, we have all the pairs of 
olumns sorted. (Note that, by the

de�nition of N , on
e all the pairs of 
olumns are sorted, they remain sorted for

ever.)

We 
an estimate the number of steps by T � (2d+2)(dm=2e+2d(k

0

(k+1)+

k)=de) + 1. Re
all that d = dk=me. It 
an be veri�ed that T � 4k

2

+ 8mk+ 7k+

14m+ 6

k

m

+ 13. This 
ompletes the proof of Theorem 1.

Remarks: Note that the network N

1;k


an be simpli�ed to a periodi
 sorting

network of depth 2 logn, by removing the Y-steps and merging P

0

with P

1

.

However, better networks exist, [3℄, with depth logn that sort in logn iterations.

Note also that the arrangement of the registers in the matrix M 
an be arbitrary.

We 
an sele
t the one that is most suitable for the subsequent merging.
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