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1 Introduction

Sorting is one of the fundamental problems in data processing. Many operations
can be performed much more efficiently on sorted data. There are many sorting
algorithms. Majority of them are programs for RAM machine (i.e. for a clas-
sical model of computer). Many of the sorting algorithms have been invented
for parallel (multiprocessor) computers with specific models of inter-processor
connections. One of the other approaches is to invent a specialized hardware
for sorting and related problems. A very popular approach in this area are
comparator networks.

1.1 Comparator networks

A comparatoris a simple device with two inputs and two outputs. For two num-
bers z and y arriving on the first and the second input, in a single computation
step the comparator outputs the value min{z,y} on the first output and the
value max{z,y} on the second output (see Fig. 1). Thus a comparator sorts a
sequence of length two. We may pipeline two comparators so that an output
of the first comparator will be used as an input of the second one. The second
comparator can perform its computation, once the first comparator is finished.

A set of comparators with connections described is called a comparator net-
work. There is a restriction that no loop-backs are allowed (i.e. no comparator
network may contain a sequence of comparators cg, ..., ¢k, such that for all ¢,
an output of ¢; mod (k+1) is connected to an input of ¢(;41) mod (k+1))- The input
of the network is placed on the unconnected inputs of the comparators (called
inputs of the network) and the output is taken from the unconnected outputs
(called outputs of the network). The input size of a network is the number of
its inputs. Since each comparator has two inputs and two outputs, the number
of inputs of any network is equal to the number of its outputs.

If the input size of the network N is n, then we label the comparator inputs
with n distinct integers Ry, ..., R, as follows:

e Each input of the network is labeled by one of the numbers Ry, ..., R,,
each number used for only one input.

e For each comparator ¢ that has the first input labeled R; and the second
input labeled R, for some i # j, the first output of ¢ is also labeled by
R; and the second one by R; (as on Fig. 1).

e If an input of a comparator is connected to an output labeled R;, then it
is also labeled R;.

For any network N with the input labeled by Ry, ..., R,, for any ordered set
X, the input configuration over X is a function ¢ : {Ry,...,R,} — X such that
the value ¢(R;) is placed on the network input labeled R;. Let ¢/(R;) denote
the value computed by N on the output labeled R; for such an input. Then
the function ¢’ : {Ry,...,R,} — X is the output configuration for the input
configuration c.
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Figure 1: A comparator with the inputs and outputs labeled by R; and R;.

We can define a level of the comparator ¢ in the network N as follows:
e the level of all comparators with both inputs unconnected is one,

e the level of any comparator with at least one connected input is [ + 1,
where [ is the maximal level of the comparators connected to its inputs.

We can divide a computation of a comparator network into steps, where during
a single step all comparators that have already values on both their inputs
compute their outputs. Thus the maximal level is the minimal number of steps
needed by the network to compute all its outputs.

For any comparator network N, we can partition its comparators into com-
parator subsets called layers. The sequence of layers (Lq, ..., L) must satisfy
the following conditions:

e If ¢ € L; and some input of ¢ is connected to the output of some compara-
tor ¢’ € Ly, then k < ¢.

e For each i, if ¢; € L; and ¢ € L; and the labels of inputs of ¢; (respec-
tively of ¢2) are R;, and Rj, (respectively R;, and Rj,) then {R;,, R;, } N
{Rizth} = 0.

For a network N with defined sequence of layers L = (L1,...,Ly) we assume
that at step ¢ all comparators from L; perform its computation. (Even if a
comparator of L; has its inputs already before step ¢, it waits until step ¢ with
its work.) The length of L (i.e. d) is the depth of N. Note that the layer L; can
contain only comparators with the level not greater than t.

An equivalent model of the comparator network computation is the following
one: The data are stored in the registers labeled by Ri,..., Ry, one label per
register. During step ¢, 1 < t < d, each comparator ¢ from layer L; takes the
values from the registers R; and R; (where R; and R; are the labels of the
first and the second input of ¢ respectively) and stores the minimum of the two
values in the register R; and the maximum in the register R;.

Fig. 2 illustrates three styles used for a graphical presentation of a compara-
tor network. The example network contains only four comparators A,B,C and D
with the inputs and outputs labeled by the numbers 1,2,3,4. In the traditional
description each comparator is presented as a box with two input lines on its
left side and two output lines on its right side. The first input (respectively out-
put) is above the second one. In the “wire-style” each comparator is drawn as
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Figure 2: A comparator network presented in different ways

a vertical arrow connecting two wires (each wire corresponds to a single label).
The arrow is directed to the wire corresponding to the label of the second (i.e.
maximum) output of the comparator. We can draw the vertical lines instead
of the arrows if all arrows are directed downwards. In the “layer-style” each
layer is drawn as a directed graph of degree 1, where the vertices correspond
to the labels and the arcs correspond to the comparators (i.e. if the first and
the second output of a comparator c is labeled R; and R; respectively, then ¢
is depicted by an arc (R;, R;).)

Comparator networks can be easily implemented as specialized hardware
devices. This is the main motivation to study these networks. The main pa-
rameters of a comparator network are the number of comparators and its depth
(the number of layers). The number of comparators corresponds to the amount
of hardware needed for the implementation of the network, while its depth
corresponds to its computation time. We can also consider other properties of
comparator networks such as the complexity of the network architecture and the
layout area needed for the implementation of the network in the VLSI technol-
ogy. The last two issues are extremely important for VLSI design and suitability
for practical applications. One nontrivial issue is to judge what “simple archi-
tecture” is. There is no easy way to express it in a mathematical model so that
all technological limitations are well modeled. For this reason we mainly dis-
cuss such parameters as depth and size of comparator networks, while quality
of architecture is often expressed in an intuitive way.

Comparator networks has been the subject of intensive investigations in
computer science. Their main application is sorting input sequences. But there
are also many other tasks that can be performed by the comparator networks.
For example we can use them for



e merging sorted subsequences into a single sorted sequence,

e sorting sequences that differ from a sorted sequence only on a limited
number of positions,

e inserting a value into a sorted sequence, so that the output is sorted,

e selecting the minimal or the maximal value (or the ¢ smallest or the ¢
greatest values) of the input.

The first three applications can be considered as sorting of the constrained
input sequences, since the output must be sorted. All these applications gain
a growing interest due to the needs in telecommunication technology. Efficient
methods of packet reordering may provide new designs of intelligent routers
and similar devices. Since communication bottleneck is one of most severe
problems in computer technology and practice today, these methods deserve a
lot of attention.

There is a lower bound of Q(logn) on the depth of the comparator networks
for all of the above listed problems, where n is the size of the input. On the
other hand, there is a sorting network of depth O(logn), known as the AKS
network [1]. Since these problems are less general than the problem of sorting,
the upper bound on the depth is also O(logn). The best currently known
sorting networks of depth O(logn) (which are variants of the AKS network)
have the depth not less than clogn, where ¢ is a constant not less than 1000.
Additionally, their architecture is very complex and is based on the structure
of (usually random) expander graphs or other random structures. Thus, for
practical applications we have to find other networks. The most elegant and
the most efficient practical designs are the two Batcher networks [3]. They have
the depth very close to %logfn and are based respectively on the odd-even
and bitonic merging networks. Note that the Batcher networks beat the AKS
network for the inputs of size n < 21990, Since 2199 is much bigger than the
estimated number of the particles in the universe, for any potential application
the AKS network is inferior to the Batcher networks.

1.2 Periodic networks

We can also consider so called periodic networks. Periodic networks perform
their computation in many iterations. During each iteration a sequence stored in
the registers is taken as an input configuration of the network and is replaced by
the output configuration computed by the network for this input. Thus although
the computation time is ¢t = dk, where k is the number of iterations and d is
the depth of the network, the number of comparators is at most dn/2, where n
is the input size (since each layer can contain at most [n/2] comparators). The
examples of the periodic networks are

e the DPSR network by M. Dowd, Y. Perl, M. Saks, and L. Rudolph [5], of
depth logn that sorts in logn iterations,



e the network by M. Kutylowski, K. Lorys, B. Oesterdiekhoff, and R. Wanka
[10] of a constant depth that sorts in O(log” n) iterations (obtained by so
called periodification of the AKS network),

e the odd-even transposition network of depth 2 that sorts in n/2 iterations,

e the network by I. D. Scherson, S. Sen, and A. Shamir [14] of depth 2\/n
that sorts in logn iterations,

e the Schwiegelshohn network [16] of depth 8 that sorts in O(y/nlogn) it-
erations.

The last three networks are very suitable for the VLSI technology, since the
area of the layout of their underlying architecture is proportional to the size of
the input. There are also known periodic merging networks of a constant depth
by M. Kutylowski, K. Lory$, B. Oesterdiekhoff [9] that merge two sequences in
O(logn) iterations.

1.3 Outline of the thesis

In this thesis the following results are presented:

e In Section 3, for an arbitrary constant k we present a periodic network
of a constant depth that sorts in O(n'/*) iterations. The construction of
this network is based on the (g,m)-blocks which are a generalization of
the odd-even transposition network, where single registers are replaced by
the groups of m registers, and comparators are replaced by the so called
e-halvers (used originally in the construction of the AKS network). This
network (presented in [8]) was asymptotically the best constant depth
network until the invention of the networks from [10].

e In Section 4, we present a comparator network that sorts any sequence
that differs from some sorted sequence at at most k positions (a so called k-
disturbed sequence). The depth of the network is 4 log n+0(log® k log log n),

and hence for k = o (2 V/log n/loglog ”), the depth of the network is 4logn+

o(logn). Thus the constant in front of logn is much smaller than the con-
stant in the asymptotically optimal AKS sorting network.

e Section 5 presents a periodic correction network of a constant depth that
sorts any k-disturbed sequence of length n in O(logn + k) iterations.

Results of Section 3 are due to M. Kutylowski, G. Stachowiak and myself.
These results have been published in [8].

The result of Section 4 is a refinement of the construction from [6] and has
been been published as a joint work by M. Kutylowski, M. Piotréw and myself
in [7].

The results of the Section 5 are unpublished yet. They are inspired by the
idea presented by Grzegorz Stachowiak of adding the back-jump comparators
to the network H; of the Subsection 5.1.



2 Preliminaries

In this section we introduce formal definitions of the basic concepts used in
the remaining part of the thesis. We also present here some simple but useful
lemmas that simplify the analysis of the comparator network computations.

Many constructions, definitions and proofs in this thesis might be regarded
at first by the reader as too formal. However, comparator networks require very
strict and precise definitions, since in many cases even small changes in their
constructions may cause serious deterioration of their performance.

We assume that all logarithms (unless stated otherwise) are to the base of
two.

Definition 2.1 Let P = (Py,...,P;) and Q = (Q1,...,Q;) be two arbitrary
sequences. By PQ we denote the sequence (Py,..., Py,Q1,...,Q;) (concatena-
tion of P and Q). By P° we denote an empty sequence, and for i > 0, P!
denotes P P.

Definition 2.2 Let X be a finite ordered set. Let x € X. Then the rank of x
in X is a positive integer r such that r = |{y € X |y < z}|.

In the following definitions we formalize the notion of comparator network
introduced in Section 1. We will identify the registers by their labels that are
integer numbers. The comparator is identified by the pair of registers that it
compares and the layer is a subset of comparators.

Definition 2.3 Let R be any finite subset of positive integers. We call a subset
L of R X R a layer over R if and only if:

e for each (i,j) € L, i # j, and
e each element of R is contained by at most one ordered pair in L. '
The elements of the layers are called comparators.

Definition 2.4 Letn and d be any positive integers. Let R be a set of n integers
(we call them registers). Let L = (L1, Lo,...,L4) be a sequence of layers over
S. Then by CN(n,d, R,L) we denote the comparator network of input size n,
depth d on the set of registers R with the sequence of layers L. For 1 <i <mn,
by R; we denote the element of R with a rank i (i.e. the ith register of R).

Definition 2.5 Let X be any ordered set. Let R be a set of n registers. Then
any function ¢ : R — X is called a configuration of R over X. The sequence
(¢(Ry),...,c(Ry)) is called o configuration sequence of R. We say that the reg-
ister R; contains the value ¢(R;). For any subset of registers S' C {Ry,...,R,}
for any x € X, we say that ¢ has k values x in S’ if and only if |{R; €
S"| e(R;) = z}| = k.

Let S C {Ry,...,R,}. We call a configuration ¢’ : S — X a S-restriction
of ¢ if and only if ¢ (R;) = c¢(R;) for each R; € S.

In another context we call such sets matchings.



Definition 2.6 Let X be any ordered set. Let R be a set of n registers. Let ¢
be any configuration of R over X. Let L be a layer over {Ry,...,R,}. Then
by L(c) we denote the configuration ¢’ of R over X obtained after executing
comparators from L:

e for each (i,j) € L, ¢'(i) = min{c(7), c(j)} and ¢'(§) = max{c(i),c(j)} (we
say that comparator (i,j) compares the registers i and j in the layer L),

e for each r € R such that there is no pair containing r in L, ¢'(r) = ¢(r).

We call L(c) a result of application of L on c.

Definition 2.7 Let X be an ordered set. Let R be a set n of registers. Let
L = (L1,...,Lg) be a sequence of layers over R. Let ¢ be any configuration
of R over X. For 0 < i < d we define a sequence of configurations L(i,c) as
follows:

e L(0,c) =c, and
e for1<i<d, L(i,c) = L;(L(i — 1,¢)).

We call the sequence (L(0,c),...,L(d,c)) a computation trace of L on c. We
also use L(c) to denote L(d,c).

The following definitions introduce notations used for constructing new net-
works from already defined layers.

Definition 2.8 Let S and S’ be two finite subsets of positive integers such that
|S| = |S'|. Let f be any bijection between S and S'. Let L be a layer over S.
Then the f-mapping of L is the layer L' over S’ defined as follows:

L'={(f(0), f(5) | (i, 5) € L}.

If L is a sequence of layers (L1,...,Lg) over S, then the f-mapping of L is
a sequence L' = (L}, ...,L}), where L} is an f-mapping of L;.

Definition 2.9 Let S and S’ be any finite subsets of positive integers. Let L
be a layer over S. Then the S'-restriction of L is the layer L' over S" defined
as follows:
L'={(,j)eL|ijeS}.
If L is a sequence of layers (L1, ..., Lg) over S, then the S'-restriction of L
is a sequence L' = (LY, ..., L)), where L} is an S’-restriction of L;.

Definition 2.10 Let S and S' be two subsets of registers. Let d > 1. Let
L =(L,...,Lg) and L' = (L},..., L) be the sequences of layers over S and
S’ respectively, such that each L; UL} is a layer over SUS'. Then the union of
L and L' (denoted by LU L") is the sequence of layers (Ly ULY,...,LqU L}).



Definition 2.11 A comparator (ri,rs) is called a standard comparator if and
only if r1 < ry. A layer L is called a standard layer if and only if it contains
only standard comparators. A network CN(n,d, R, L) is a standard network if
and only if L is the sequence of standard layers.

All the comparator networks considered in the following sections are stan-
dard networks.
We will frequently use the following trivial but useful observation.

Lemma 2.12 e If L is a standard layer, then any S-restriction of L is also
a standard layer.

o [f the union of standard layers is a layer, then it is a standard layer.

e If L is a standard layer over S and f : S — S’ is an increasing one to one
function, then the f-mapping of L is a standard layer over S'.

The following simple lemma and corollary state that we can clip a standard
network to an arbitrary size preserving many of its properties.

Lemma 2.13 Let R be a set of n registers. Letm <n and R' = {R;,...,R,}.
Let L be a standard layer over R and let L' be the R'-restriction of L. Let c
be a configuration of R such that ¢(R;) = ¢max, for each i > m, where cmax =
max{c(r)|r € R}. Let ¢ be the R'-restriction of c. Then

1. L'(c") is an R'-restriction of L(c), and
2. L(¢)(R;) = ¢max for each i > m.

Proof. Let r € R'. If there is no comparator in L containing r, then
L'()(r) = (r) = e(r) = L(c)(r). If there is ' € R’ such that

(min{r,r'}, max{r,r'}) € L,

then
(min{r, '}, max{r,r'}) € L'

and hence L'(c¢')(r) = L(¢)(r). If there is ' € R\ R’ such that (r,r') € L, then
¢(r') = emax and hence L'(¢')(r) = ¢(r) = L(c)(r).

The second property follows immediately from the fact that for ¢ > m,
¢(R;) = cmax and that any register connected by a comparator to R; must
either be the first register of the comparator or contain also the value cypax in
configuration ¢. O

An immediate consequence of Lemma 2.13 is the following useful corollary.

Corollary 2.14 Let R, R', ¢, ¢ and cpax be defined as in Lemma 2.13. Let L
be a sequence of standard layers over S, let L' be an S'-restriction of L. Then

1. L'(c") is an R' restriction of L(c), and
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Figure 3: Lemma 2.18.

2. L(¢)(R;) = ¢max for each i > m.

Definition 2.15 Let X be an ordered set and let R be a set of n registers. A net-
work CN (n,d, R, L) sorts a configuration ¢ of R (and the sequence (¢(R1),...,c(Ry)))
if and only if the sequence (L(c)(R1), ..., L(c)(Ry)) is a nondecreasing sequence.

A network N = CN(n,d,R, L) is called a sorting network over X if and
only if for all configurations ¢ : R — X, network N sorts c.

Any sorting network can be transformed into a standard sorting network of
the same depth and with the same number of comparators in each layer (see
exercise 16 on page 239 in [11]).

The following lemma from [11], called Zero-One Principle and is a funda-
mental tool for analyzing comparator networks.

Lemma 2.16 A comparator network N is a sorting network over any ordered
set X if and only if N is a sorting network over {0,1}.

We call the configurations over {0, 1} zero-one configurations.
Zero-One Principle is a consequence of a slightly more general fact, which
we present below.

Definition 2.17 Let X be an ordered set. Let R be a set of n registers. Let ¢
be a configuration of R over X and letY be a set of values of c. For integer k
a k-threshold of ¢ is a configuration ¢’ of R over {0,1} such that:

¢(R;) = 0 if rank of ¢(R;) in'Y is less than k,
Yl 1 otherwise.

Lemma 2.18 Let X be an ordered set. Let R be a set of n registers. Let c be
a configuration of R over X. Let k be any integer and let ' be a k-threshold of
c. Let L be a layer over R. Let d = L(c) and let d' be a k-threshold of d. Then
d = L(c"). (See Fig. 3.)

Proof. Let Y be a set of values of c¢. (Y is also a set of values of d.) Suppose
that d' # L(c¢'). Then there is an index ¢ such that d'(R;) # L(c¢')(R;), that is,
either d'(R;) = 0 and L(c)(R;) = 1 or d'(R;) = 0 and L(¢')(R;) = 1. In the first
case the rank of d(R;) = L(¢)(R;) in Y is less than k. But L(c¢')(R;) = 1 implies



that ¢/(R;) = 1 or there is a comparator (R;, R;) in L where ¢/(R;) = 1. Thus
the rank of ¢(R;) in Y is at least k or L(c)(R;) is maximum of the two values,
with at least one of them having the rank greater or equal k. Hence the rank of
L(c)(R;) must be greater or equal k. Contradiction. The case d'(R;) = 0 and
L(¢')(R;) = 1 is analogous. O

Lemma 2.19 Let X be an ordered set. Let R be a set of n registers. Let c be
a configuration of R over X and Y be the set of values of c. For 1 < k < n,
let ¢y, be k-threshold of c. Then there is no other configuration ¢’ with the set of
values Y such that for each k, ci is a k-threshold of c'.

Proof. Suppose that there is such a configuration ¢’, ¢’ # ¢. Then ¢(R;) #
c'(R;), for some 4. The rank r of ¢(R;) is different from the rank ' of ¢'(R;) in
Y, since Y is an ordered set. Consider the case r < r' (equivalent to r+1 < r').
Then ¢,41(R;) = 0 which is a contradiction to ¢,41 being a (r + 1)-threshold of
c'. The case r' < r is analogous. O

Corollary 2.20 Let X, R, ¢, Y and ¢ be defined as in Lemma 2.19. Then
there is mo other configuration c' with the set of values Y such that for each
2<k<|Y|, ¢ is a k-threshold of .

Proof. It follows from Lemma 2.19 and from the fact that ¢; is a constant
function equal to 1 and, for k£ > |Y|, configurations ¢j, are constant functions
equal to 0, and the constant k-thresholds do not impose any restrictions on the
configuration. O

Lemma 2.21 Let X be an ordered set. Let R be a set of n registers. Let ¢ and
c' be configurations of R over X with the same set of values and with each value
occuring as many times in ¢ as in ¢'. For 1 <k <n, let ¢y (respectively c},) be
a k-threshold of ¢ (respectively ¢'). Let L be any layer over R. Then ¢’ = L(c)
if and only if for each k, 1 <k <n, ¢}, = L(cg).

Proof. If ¢/ = L(c), then by Lemma 2.18, for each k, ¢, = L(cy). If for each
k, 1 <k <n,c|, = L(ck), then by the fact that each L(ct) is a k-threshold of
L(c) and by Lemma 2.19 we have ¢/ = L(¢). O

The following lemma is a simple but useful modification of the zero-one
principle.

Lemma 2.22 Let X be an ordered set. Let R be a set of n registers. Let ¢ and
¢ be configurations of R over X. For 1 < k < n, let c; (respectively c},) be a
k-threshold of ¢ (respectively ¢'). Let L = (Lq,...,Lg) be a sequence of layers
over R. Then ¢’ = L(d,c) if and only if for each k, 1 <k <mn, ¢}, = L(d, cy).

Proof. Immediate consequence of Lemma 2.21 O
The following definition is specific for the zero-one configurations.

10



Definition 2.23 Let R be a set of n registers. Let ¢ be a configuration of R
over {0,1}. Let p > 0. We say that c is p-dirty if and only if there is an index
i such that for all1 < j <i—1,c¢(R;) =0 and for alli+p < j <n, c¢(R;) = 1.
The subset of registers that are between the first register containing one and the
last register containing zero is called dirty region of c.

11
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Figure 4: The n-odd-even transposition network for n = 7. The first layer is
drawn with solid lines and the second layer is drawn with dashed lines.

3 Periodic Sorting Networks

In this section for arbitrary constant k, we present a periodic network of a con-
stant depth that sorts a sequence of n elements in O(n'/*) iterations. The con-
struction of the network is based on the so called (g, m)-blocks. An (g, m)-block
is a generalization of the well known odd-even transposition sorting network
where the registers are replaced by the groups of m registers and the compara-
tors are substituted by the so called e-halvers.

3.1 Periodic Networks. Preliminaries

Recall that a periodic network (Section 1.2) processes the data stored in registers
in many iterations. Here we specify more formally the notion of a periodic
sorting network.

Definition 3.1 Let N be a comparator network CN(n,d,R,L). N is a pe-
riodic sorting network if and only if for some positive integer t the network
CN(n,td, R, L) is a sorting network. We say that N sorts in t iterations.

3.1.1 Odd-even transposition network
The simplest periodic sorting network is the following one:

Definition 3.2 Let R = {1,2,...,n}. An n-odd-even transposition network
(see Fig. 4) is a network CN(n,2, R, (L1, Ls)), where

Ly ={(,i+1)] 1<i<n andi is odd}

and
L, ={(i,i+1)] 2<i<n andi is even}.

Let us recall the following well known facts (see [11] and [4]):

Lemma 3.3 [11] The n-odd-even transposition network sorts in [n/2] itera-
tions.

Lemma 3.4 [}] If a periodic standard network N on registers {1,...,n} con-
tains all comparators of the n-odd-even transposition network, then for each
k <n, N sorts each k-dirty configuration in at most k iterations.

12



3.1.2 e-halvers

In the construction of our periodic networks we will use comparator networks
called e-halvers. The notion of e-halver was introduced in [1]. Informally, halv-
ing is the task of moving the greater values to the second half of the registers
and the smaller values to the first half of registers, so that no value in the first
half is bigger than any value in the second half. The ordering of the values inside
a half does not matter. If we consider only zero-one configurations of the set of
registers R of size 2m with x zeroes and z; ones, then the halver either moves
all the ones to Ry;41, ..., Ramy or all the zeroes to Ry, ..., Ry. The exact halver
must have a depth Q(logm). This follows from the Alekseyev’s lower bound
(n —t)[log(t + 1)] on the number of comparators for selecting t = m smallest
elements in the sequence of length n = 2m. (See [11], page 234.)

Ajtai, Komolos and Szemeredi [1] introduced so called e-halvers. The dif-
ference between halvers and e-halvers is that in the later case we demand that
e-halver leaves either at most ez zeroes in Ry,41,..., Rom (if o < 1), or at
most ey ones in Ry,41,...,Rom (if 21 < xp) instead of moving all zeroes or
ones to the proper half. It is surprising that, for £ > 0, there exist e-halvers of
the depth independent on the number of their registers. This led to construc-
tion of the famous AKS network. The construction of e-halvers is based on the
random bipartite graphs called ezxpanders. The tradeoff between the depth of
e-halver and the value €, and their random structure, make the networks based
on e-halvers rather impractical. However we use them in our construction to
obtain good asymptotical estimation of the runtime.

Below we introduce a more formal definition of an e-halver. First we define
auxiliary functions:

Definition 3.5 Let ¢ € [0,3) and let m > 0. We define two functions over
[0,2m)] (see Fig. 5):

fem(z) = { Er for z < m,

m—(1—¢e)2m —x) forz>m,

B (1—¢)x for x <m,
gs,m(x) - { m — E(Qm — 1’) fOT‘ T >m.

Let us state the following obvious properties:

Lemma 3.6 f.,, is a convezx function. The functions f. . and g., are non-
decreasing, continuous, and for 0 < x < 2m the following holds:

® 0< fom(z) <m, 0 < gem(z) <m,
o fem(@) <, gem(z) < w,
o fem(@) + gem(z) = 2,
o fem(@) =m — gem(2m — ),
(z)

¢ gom(z) =m — fom(2m — ).

13
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Figure 5: The functions f. ,, and g.,m

Definition 3.7 Lete > 0. Let n be an even positive integer. Let R = {1,...,n}
be a set of registers. A comparator network N = CN(n,d, R, L) is an e-halver
on R if the following holds. For each configuration ¢ of R over {0,1} such
that |[{r € R | ¢(r) = 1}| = x the configuration ¢’ = L(d,c) has the following
properties:

o [fr € RIr<n/2, ¢() = 1}| < fons(a), and

e [{reR|r>n/2, c(r) =1} > g np(2).

Note that by the last equality stated in Lemma 3.6 e-halver is symmetrical
in the following sense:

Lemma 3.8 Let N be a e-halver on R = {1,...,n} registers for some even n >
0. Let ¢’ be an output configuration of N for some input zero-one configuration
¢ such that |{r € R| ¢(r) =0} = z. Then:

e [{reR|r>n/2, c(r) =0} < fonp@), and
o {reR|r<mn/2, d(r)=0}>g.nn).

The following lemma is due to Ajtai, Komolos and Szemeredi and states the
key property of e-halvers:

Lemma 3.9 [I1] For each € > 0 there exist a constant positive integer d., such
that for each even positive integer n, there is an e-halver on {1,...,n} of depth
d..

3.1.3 (e, m)-blocks

Below we use e-halvers to define (g, m)-blocks that are the basic elements used
in the construction of our network. An (e,m)-block can be presented as the
odd-even transposition network, where each register is replaced by a group of m
registers, and each comparator is replaced by an e-halver on the corresponding
pairs of groups.

14
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Figure 6: The upper (a) and the lower (b) part of an (e, m,n)-block, for n = 6m.

Definition 3.10 Lete > 0. Let m and n be positive integers such that n = km
for some integerk > 2. Let R ={1,...,n}. Let N = CN(2m,d.,{1,...,2m},L)
be an e-halver. For 1 < j < k let K; = {(j —1)m + 1,...,jm} and let
fi{1,...,2m} = K; U Kj11 be a function such that f;(i) = (j —1)m +i. We
call a network M = CN(n,2d., R, L1Ls) an (¢,m,n)-block (or shortly (e,m)-
block on R) if and only if for each t, 1 <t < d. (see Fig. 6):

e [ is the union of the f;-mappings of L for all odd j, 1 < j <k,
o Ly is the union of the fj-mappings of L for all even j, 2 < j <k.

We call the subsequence of layers Ly an upper part of the (¢, m,n)-block
and the subsequence of layers Lo a lower part of the (e,m,n)-block. We call the
subset K; the jth m-bucket of R.

If n is not a multiple of m, then by (e,m,n)-block we mean a network
CN(n,2d.,(1,...,n),L"), where L' is the {1,...,n}-restriction of the sequence
of layers of the (e,m, [n/m]m)-block.

Note that according to Definition 3.10 the n-odd-even transposition network
is an (0,1,n)-block but its depth is 2 instead of d..

3.2 Properties of the (¢, m)-blocks

In this section we prove Lemma 3.23, key property of (¢, m)-blocks. It states
that an (e, m,n)-block shrinks the dirty region to O(m logn) registersin O(n/m)
iterations. We commence with some auxiliary lemmas and definitions.

Definition 3.11 Let a = (a1,...,a;) be a vector of real numbers. For 1 <
i <1, hd;(a) (a head of a) denotes the prefix sum Z;Zl a;. (We assume that
hd;(a) = 0 for i < 1 and hd;(a) = hd;(a) fori >1). For 1 < i <1, tly(a)
(a tail of a) denotes the sum z;:i(m —aj). (We assume that tl,, ;(a) =0 for
i >1, and tlyi(a) = thy1(a) fori<1).

15



Definition 3.12 Let a = (a1,...,a;), b = (b1,...,b), where a;,b; € [0,m] for
1 <i < 1I. We say that b dominates a (denoted by a < b) if and only if
hd;(a) = hd;(b) and hdy(b) < hdg(a), for every k, 1 < k <.

Note that a < b if and only if tl,;, 1 (a) = tly,1(b) and tly, (b)) < tly, x(a) for
every 1 <k <.
The following properties follow directly from the definition.

Lemma 3.13 The relation < is a partial order on [0,m]"'.

Lemma 3.14 Let L be any sequence of standard layers on R = {1,...,Im}.
Let ¢ be a configuration of R over {0,1}. Let ¢' = L(c). Let K; denote the ith
m-bucket of R. Let x = (x1,...,%;) and y = (y1,...,y1) be two vectors such
that for each i, 1 <1 <,

o z;=|{j|j€Ki c(j)=1}| and
ey =l{jljeK; d(j) =1}
Then x < y.

Definition 3.15 Let ¢ > 0. Let m > 0. Let a = (a1,...,a;) be a vector of
real numbers such that a; € [0,m] for all i. By N: ,(a) we denote a vector
x = (x1,...,21) such that for each odd j, 1 < j <lI:

* zj = fem(a; +ajt1), and
® Zjy1 = gem(aj +ajy1) and
o ifl is odd, then x; = qy.

By Pem(a) we denote a vector x = (x1,...,x;) such that for each even j,
2<ji<l:

e 1 =ay, and

® Ij= fs,m(aj + aj+1)’ and
® Tjt1 = gemlaj + aji1) and
e ifl is even, then x; = qy.

Let us comment the above definition. Let a = (ay,...,a;) be a sequence
such that a; is the number of ones in K;. Assume that an (e, m)-block executes
its upper part. Consider the number of ones that remain in K; for i odd. By the
definition of an e-halver, it is upper bounded by f. m(a; + a;+1). The number
of ones in K;;; is at that moment at least ge m(a; + air1). So we may regard
N m(a) as a pessimistic estimate on the placement of ones.

Lemma 3.16 Let 21 and x5 be two vectors from [0,m]' such that, for 1 <i <
l’ hdz(xl) S hd,(l‘g) Then’ fOT‘ 1 S i S l’ hdi(Ns,m(xl)) S hdi(-/\/s,m(x2))
(respectively hd;(Pe m (21)) < hd;(Pe m(x2)) ).
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Proof. If i is even, then hd;(N:,,(z1)) = hd;(z1) and hd;(N: m(z2)) =
hd;(z5). If i is odd, then

hd; (Ve (1)) = hdi—1 (21) + fem (@1, + T1,i41)

=hdit1(z1) — ge (@1, + T1,i41)

and
hd;(Nem (22)) = hdi—1 (22) + fom(T2, + 22,i41)

=hdit1(22) — gem (2, + @2,i41)-

If 1 ; + 21,141 < T2, + 2,441, then by the fact that
hd; 1 (Ve (1)) < hdi—q (Ve m(22))
and that f. ,,, is nondecreasing function we have
hd;(NVeym(21)) < hdi(Nz,m(22))-
If 21,; + 21,i+1 > ®2,; + T2,41 then by the fact that
hdig 1 (Ve m(21)) < hdigr (Vzm(22))
and that g. ,, is nondecreasing function we have
hd;(NVe,m (21)) < hdi(Nz,m(22))-
The proof of the claim for P; ,, is analogous.

Lemma 3.17 Let x and y be two vectors from [0,m]' such that x < y. Then
Nem(®) 2N (y) and Pe () < Pen(y)-

Proof. The lemma follows directly from Claim 3.16. O

Lemma 3.18 Let R ={1,...,lm} be a sequence of registers. Let L be an upper
(respectively a lower) part of the (e,m)-block on R. Let ¢ be any configuration
of R over {0,1}. Let ¢/ = L(c). Let x = (x1,...,2) and y = (y1,...,y1) be
vectors such that, for each i, 1 <i <I,

zi ={jlJ €K c(j)=1}

and
yi=Wj|je K d(j) =1},

where K; is ith m-bucket of R. Let z' € [0,m]" be any vector such that z' < z.
Then Nz pm(x') <y (respectively Pe n(z') < y).
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Proof. We prove the lemma only for the upper part of the (¢, m)-block and
./\/'E’m. The lemma for the lower part and P; ;, is analogous. By Lemma 3.17,
Nem(z') 2 Nz (z). Thus it is sufficient to show that N, (z) < y. If i is
even or ¢ = [, then hd;(N; »(x)) = hd;(z) = hd;(y). If i is odd and i < [, then
hdl(./\/’57m($)) = hdl_l(ﬂf) + fs7m($i + iEi+1) = hdH_l(iE) — gg7m(wi + mi—i—l)- On
the other hand, by the fact that there is e-halver on the K; U K;y; in the upper
part of (e, m)-block,

hd;(y) <hdi—1(y) + fem(yi + yir1) = hdip1 (y) — gem (Yi + Yig1)-

Consider the cases z; + ;11 > y; + yiy1 and z; + ;41 < Y; + yit1, in a similar
way as in the proof of Lemma 3.16:

o If x; + xip1 > yi + Yit1, then hdi(y) < hdi1(y) + fomWs + Yit1) <
hdifl(x) + fg,m(fi + l‘i+1) = hdi(Ng,m (ac))

o If 2 + 211 < yi + Yit1, then hd;i(y) < hdip1(¥) — ge,m (i + Yit1)
hdiJrl(x) - gs,m(xi + xiJrl) = hdz(Ns,m (x))

Thus hd;(y) < hd;(Nzm(z)). O

IN

Definition 3.19 Let & > 0. Let m > 0. Let z € [0,m]'. For integers t > 0 we
define a sequence V!, () as follows:

o Von(x) =z,
o Vi (2) = Neyn (Vi1 (2)) for odd t > 1,
o Vi (2) =PV (2)) for event > 2.
(If t is not integer, then by VI (x) we denote Vg[t,],l(x))

Let  be the minimal vector in [0,m]’ with the sum of coordinates equal to
the number of ones in some initial zero-one configuration. We use the values
Vg’m(a:) to estimate a vector of the numbers of ones in the buckets of registers
after application of the layers containing an (e, m)-block. We assume that the
sequence of layers of the considered network is of the form XULY, where U
and L are the upper and lower parts of the (¢, m)-block respectively, and X and
Y are arbitrary sequences of standard layers. We consider the configurations
obtained after the whole iterations and after the XU parts of the iterations.

Lemma 3.20 Let R = {1,...,lm} be a set of registers. Let U and L be respec-
tively the upper and the lower part of an (e,m)-block on R. Let X andY be any
sequences of standard layers over R. Let ¢ be any configuration of R over {0,1},
and let |{i | c(i) = 1}| = km + m/, where k is an integer and 0 < m’' < m. For
t > 0 let the sequence of configurations c; be defined as follows:

® Cop =¢C,

e ¢; = XU(ct—1) for odd t > 1,

18



e ¢, =LY (c;—1) for event > 2.

For each t > 0, for 1 <i <1, let y,; = |{j € K; | ¢(j) = 1}|, where K; is the

ith m-bucket, and let yr = (Ye,1,...,Yt1). Let © = (x1,...,2;) be a vector such

that, for 1 <i <k, z;=m and xp31 =m' and fork+1<i<m, z; = 0.
Then for each t >0, VI (x) < y;.

Proof. The vector z is the minimal element in [0,m]' in relation < such
that hd; equals km + m'. Thus x < yg. It follows by induction from Lemmas
3.14 and 3.18 that V! () <. O

The proof of the following combinatorial lemma (included in Appendix A)
has been invented by Grzegorz Stachowiak. Here we consider only the values of
hd; (V! (%)) and tly, (VL (z)), where the vector z is of the form (m)*(0)"~*
(i.e. a minimal vector with the sum of coordinates equal to km). The lemma
states that, for ¢ = al, the sum of the coordinates of the vector V!  (z) that
are outside the last k& + Blog(lm) coordinates is less than one, where a and
are constant. That is, almost all the weight of the vector is shifted to the last
k + Blog(lm) coordinates. Such a vector corresponds to an “almost” sorted
configuration of zeroes and ones. The lemma also states analogous result for
the tail of the V! ().

Lemma 3.21 Let 0 < e < % There exist constants o, 8 such that, for each
m > 0, for each positive integers | and k, such that ml > 12 and k <, for each
vector . = (m)*(0)'~F the vector y = V2L (x) has following properties:

e hd|;_r_g10g(im)|(¥) < 1, and
ot ri—kt+810g(m)] () < 1.

Proof. See Appendix A. O

Note that hd|;_;_g10g(im)|(y¥) can be used to upper bound the number of
ones in the buckets Ky through K|;_j_g10g(1m)|- Since the last number is non-
negative integer, it must be zero if hd|;_;_g10g(m)|(y) < 1. For this reason
estimations of the form hd|;_;_giogum)|(¥) < 1 and tly, 1—k4810g0m)1(¥) < 1
are all we need.

In Lemma 3.21 we assume that the number of ones is a multiple of m. This
can be easily generalized to the case where the number of ones is arbitrary:

Corollary 3.22 Let e, a, B, m, and [ be as in Lemma 3.21. Let k be a non-
negative integer, k < I. Let x = (m)¥(m/)(0)! %1, where 0 < m' < m. Then
vector y = Vgin(ac) has the following properties:

e hd|;_;_1-g10gam)| (¥) <1, and
ot ri—kt+810g(m)] () < 1.

Proof. The corollary follows from Lemma 3.21 and from the fact that for
allt >0, for 1 <7 <,

hd; (VL () < hdi (VL ((m)* 1 (0)'7*71)) (1)
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and
i (VL (m)*(0)'75)) > tln i (VE 0 (2)).

The first inequality (1) follows by induction on ¢ from Lemma 3.16. The
second inequality can be shown in a similar way. O

Lemma 3.23 Let 0 < € < % Let R = {1,...,n} be a sequence of registers.
Let M = CN(n,d, R, L) be an (e,m)-block. Let ¢ be a mp-dirty configuration of
R, with p such that m(p+ 1) > 12. Let X and Y be two sequences of standard
layers. There exist two positive values o' and ' that depend only on ¢ such that
the configuration ¢! = (XLY)[*'Pl(c) is m[B'log((p + 1)m)]-dirty.

Proof. Let K; be the first bucket of M that contains a one. Then Kj,,
is the last bucket that may contain a zero. Let S = (J,<;<;,, Ki- Let L'
(respectively, X’ and Y"') be a S-restriction of L (respectively, of X and Y'). All
comparators that are in XLY are standard comparators, thus all comparators
that are not in X'L'Y" do not change the values in their registers and the S-
restriction of ¢’ is equal to (X'L'Y")[*?l(cg), where cg is the S-restriction of c.
Note that L' is a sequence of layers of an (&, m)-block on the registers of S. Let
L} be the upper part of L' and L} be the lower part of L'.

Let ¢p = ¢s and for odd ¢ > 1, let ¢; = X'L|(c;—1) and let cz1 = LY (¢y).
For t > 0, let #; = (x¢,1,...,%tp+1) be a vector such that x;; is the number of
ones in Kjy;_1 in configuration ¢;. Let ¢ = 22:1 Zo,; (i.e. ¢ is the number of
ones in cg). Let k = [¢/m| and m’ = ¢—km. We define 2’ = (m)*(m')(0)! %!
and for t > 0 let z; = V! (2'). That is, 2’ is the smallest vector with respect
to < that represents a configuration with the same number of ones as cg.

It follows from Lemma 3.20 that for each ¢ > 0, } < z;. That means that
for each i, 1 < </,

and
tlm,i (aci) Z tlm,i (l‘t ) .

By Corollary 3.22, there exist two constants o and 3, such that

hd |k g10g((p+1)m) | (ZFap)) < 1

and
Lo, [prt1 —k+8 10g ((p+1)m)] (FTap)) < L.
Thus
hd |k g1og((p+1)m)| (T1ap) =0
and

bl [p+-1—k+B10g((p+1)m)] (T[ap)) = 0,

since they must be nonnegative integers. Note that

[p+1-k+Blog((p+1)m)] — [p—k— Blog((p+1)m)] < 2+23log((p+1)m).

Thus we can choose the constants o' and ' as respectively a and 24 + 2. O
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3.3 Periodic sorting network definition and analysis

The structure of our network is following: The layers are divided into k + 1
groups, each of them corresponding to an (g, m;)-block, for carefully chosen
sizes m;. The idea is that the computation can be divided into virtual phases:
During Phase 1, we shrink the size of a dirty region to from n = min!/* to
msn'/®. For this purpose we use (e, mq)-block as in Lemma 3.23 and disregard
in the analysis other layers. We only note that they are standard layers. Then
we start the second virtual phase. For this purpose we consider only the buckets
of the (g, m2)-block that intersect the dirty region. Again we use Lemma 3.23 to
show that the size of dirty region is shrunk to msn'/*. We iterate this approach
k times until we get a sequence that is O(log'ﬁ'1 n)-dirty. Then we apply odd-
even transposition sorting network as the last block. This allows to finish sorting
in the time proportional to the size of the last dirty region.

Definition 3.24 Let0 < e < % Let B' be the constant defined in Lemma 3.23.
Let k > 2 be a positive integer. For a positive integer n > 22, we define a
network I. . as a comparator network CN(n,2kd. + 2,{1,...,n},L), where
L=LiLs...LyLkyq1, such that for each i, 1 <i <k, L; is a sequence of layers
of (g,m;)-block on {1,...,n}, where

e my = [nF=D/*] and
o for2<i<k,m;=/[mi_1/n'/*][B"log(2n)],
and Ly11 is a sequence of the two layers of n-odd-even transposition network.

Note that for k > 2 and n > 2¥*2 the following holds: n'/* > 2 and

[nE=D/E] (/% £ 1) < 2n. (Indeed: (n*~D/F 4 1)(n'/* + 1) < 2n if and only
if (n*=1/k _1)(n'/* —1) > 2. On the other hand n'/* —1 > 20:+2)/k _ 1 > 1
and n(*=D/k _ 1 > 9k+2)(k=1)/k _ 1 > 3 gince k > 2.)

We assume that n is large enough, to have m;n'/k > 12, for 1 <i < k.

Theorem 3.25 The network I. i, sorts any input in O(knl/k) iterations.

Proof. Let o' and ' be the constants o’ and 8’ from Lemma 3.23. Note
that for each ¢, 1 < ¢ < k, the sequence of layers of I.j , has a following
structure: L = X;L;Y;, where L; is a sequence of layers of the (g, m;)-block,
and X; and Y; are sequences of standard layers.

Claim 3.26 Let ¢y be any configuration over {0,1} and, for 0 < i < k, let
¢ = (XiLiYi)W”l/k] (ci—1). Then, for 0 <i < k, ¢; is (min'/*)-dirty.

Obviously, ¢p is at most, (min'/*)-dirty. By Lemma 3.23 if ¢;_; is (m;n'/*)-
dirty, then ¢; is at most (m;[5’log((n*/* + 1)m;)])-dirty. But

m;i[B' log((n'/* + 1)m;)] < n*/*Tm;/n'/*¥173" log(2n)] = n/*m 1.

Tt follows that ¢, = L[ T(¢q) is (my[B' log((n'/* + 1)my)])-dirty.
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Claim 3.27 For1<i <k,

i—1
m; < (mkwk Y 1/nj/’“) (8" log(2n)]".

7=0
It follows from the definition of m; that
my < nk=/k 4

and that, for 1 <i <k —1, if

i—1
mi < | KL N1 mIl | 18 og(2n)]"

=0
then

Mmit1 < (n(k_i_l)/k + Z 1/”j/k) [8"log(2n)]".

=0

Indeed:
mit1 = [mi/n'/*173" log(2n)]

< (n<’“’)/’“+§jl/nj/’“> /n'* -8 log(2n)]" | [B'log(2n)]

J=0

i—1
< (n‘k—“/’le/n”’“) /n'/* | - 18" log(2n)]’

J=0

< ((n(ki)/k + li 1/nj/k> /nt* 4 1) - [8'log(2n)]!

Jj=0

= (n(k_i_l)/k + i l/nj/k) - [B' log(2n)]".

=0

By Claim 3.27, my, < (1 + Zfzo l/nj/k) [B'log(2n)]*.

We assume that n'/* > 2, so m;, < 3[f"log(2n)]* and my[S' log((n'/* +
1)myg)] < 3[B'log(2n)]1¥*t. Thus ¢ is (3[B'log(2n)]**1)-dirty. L = XLy,
where X is a sequence of standard layers and Ly is the sequence of the two
layers of n-odd-even transposition network. By Lemma 3.4 such a network sorts
the (3[B' log(2n)]**+1)-dirty configuration in 3[3'log(2n)]**! iterations. Thus
the total number of the iterations of I. j , needed for sorting arbitrary n-dirty

configuration cg is

E[a'n'/*] + 378" log(2n)1*+" = O(kn'/*).
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The sorting time (i.e. the depth of I  , multiplied by the number of iterations)
is
Tt = (2kd- + 2)(k[a/n'/*] + 3[8' log(2n)]*+1),

where d. is the depth of the e-halver. Since d. is constant, we have

T = O(K*n'/*).

23



4 Correction Network

In this section we consider a problem of sorting sequences of length n that are
obtained from a sorted sequence by changing the values of at most its k elements,
where k is much smaller than n.

Definition 4.1 A sequence (ai,...,ay,) is called k-disturbed if and only if it
can be obtained from some sorted sequence s by changing values of at most k
elements of s. A configuration c of the set of n registers R is called a k-disturbed
configuration if and only if a sequence (¢(R1),...,c(Ry)) is k-disturbed.

The expression “k-disturbed” should be understood “at most k-disturbed”.
Note that sequence is k-disturbed if and only if it can be transformed into
a sorted sequence by changing at most k of its elements. Note also that a
0-disturbed sequence is a sorted sequence.

The main result presented in this section is the following theorem:

Theorem 4.2 Letn and k be arbitrary positive integers such that k < n. Then
there is an explicit construction of a comparator network of depth 4logn +
O(log2 kloglogn) that sorts any k-disturbed input sequence.

Note for k = o (2V log n/loglog ”) the depth of the network is 4logn+o(logn).

4.1 Correction networks. Preliminaries

Definition 4.3 Let R be a set of n registers. A network N = CN(n,d,R, L)
is called a k-correction network on R if and only if for each k-disturbed config-
uration ¢ of R, the sequence (L(d,c)(R1),-..,L(d,c)(Ry)) is sorted.

Definition 4.4 Let R be a set of n registers. Let ¢ be any configuration of
R over {0,1} such that |{i | ¢(R;) = 0} = z. Then the zeroes area of ¢
(respectively ones area of ¢) denotes the set of registers {R; | 1 < i < z}
(respectively {R; | x +1 < i <n}). We call a displaced one a one contained in
a register from the zeros area. We call a displaced zero a zero contained in a
register from the ones area.

Lemma 4.5 Let R be a set of n registers. Let k > 0. Let ¢ be any k-disturbed
configuration of R over {0,1}. Then c has at most k displaced zeroes and at
most k displaced ones.

Proof. Suppose that ¢ has more than k zeroes in the ones area. Then
there has to be more than k ones in the zeroes area. Then in the sequence
s = (c¢(Ry),...,c(Ry)) a group of at least k + 1 ones is entirely on the left side
of a group of at least k + 1 zeroes. To change the sequence s into a sorted
sequence we have to change the values of at least k + 1 elements. Thus c is not
k-disturbed. O
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Figure 7: The networks INSis and TNSY,

Lemma 4.6 Let R be a set of n registers. Let ¢ be any k-disturbed configuration
of R over X. For eachl, 1 <1 < n let ¢; be the l-threshold of c. Then ¢ is
k-disturbed.

Proof. Suppose that for some [, ¢ is not k-disturbed. Let
x; = min{ce(R;) | ¢(R;) = 1}.

Let ¢’ be a configuration obtained from ¢ by changing at most k of its values
such that the sequence (¢'(R1),...,c'(Ry)) is sorted. Let ¢ be a configuration
of R over {0, 1} such that ¢(R;) = 0 if and only if ¢/(R;) < 2;. Then ¢ can
be obtained from ¢; by changing at most & of its values, since ¢;(R) # ¢ (R) if
and only if ¢(R) > z; and ¢/(R) < z; or ¢(R) > z; and ¢(R) < z; (i.e. R is
one of the at most k registers, where ¢ and ¢’ differ). On the other hand, the
sequence (¢"(R1),...,c"(Ry)) is sorted. Contradiction with the fact that ¢; is
not k-disturbed. O

Lemma 4.7 The comparator network N is a k-correction network if and only
if N sorts all k-disturbed zero-one sequences.

Proof. It follows from Lemmas 4.6 and 2.22. O

4.2 Auxiliary networks

The following definitions introduce the classical insertion networks INS). and
INS?. The network INS} inserts any value placed in its first register to the
sorted sequence stored in the remaining registers. (That is, INS} sorts any
sequence that differs from the sorted sequence only at the first position.) Anal-
ogously, the network TN S® sorts any sequence that differs from the sorted se-
quence only at the last position.
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Definition 4.8 Let m be a positive integer. For n = 2™, we define a network
INS! = CN(n,m, R, L) on the set of registers R = {1,...,n} with the following
layers L = (L1,...,Ly) (see Fig. 8):

e ifm=1, then L = ({(1,2)}),
e ifm>1, then L =L'(L,,), where:
— Ly ={(,i+1)]1<i<n-—1, iisodd}

— L' is the f-mapping of the sequence of layers of INS}l/W where
fz) =2z —1.

If n > 1 is not a power of two, then

INS! = CN(n,[logn],{1,...,n}, L"),
where L' is a {1,...,n}-restriction of the sequence of layers of INS} ., .1 -
Definition 4.9 The network INS? is dual to INS.. That is

INS? = CN(n,[logn],{1,...,n},L),

where L = (L1, ..., Laniogn]—1), and L; = {(n —j +1,n—i+1) | (i,5) € L},
where L} denotes the ith layer of INS}.

Below we define simple networks I, and I? that are able to sort 1-disturbed
sequence of zeroes and ones provided that a zero has been changed to a one (in
the case of I}) or a one has been changed to zero (in the case of I?). Examples
of these networks are depicted on Fig. 8.

Definition 4.10 Let m be a positive integer. For n = 2™, we define a net-
work I} = CN(n,2m — 1,R, L) on the set of registers R = {1,...,n} with the
following layers L = (Ly,...,Lom_1):

o ifm=1, then L= ({(1,2)}),
o ifm>1, then L = (L1)L'(Lam—_1), where:

— L ={(,i+1)]|2<i<n—2, iiseven}
— Lo ={(6,i+1) |1 <i<n—1, {isodd}

— L' is the f-mapping of the sequence of layers of Ié/Q, where f(z) =
2z — 1.

If n > 1 is not a power of two, then
I! = CN(n,2[logn] —1,{1,...,n}, L"),

where L' is a {1,...,n}-restriction of the sequence of layers of 121[10“1 .
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Figure 8: The networks I1; and I7,

Definition 4.11 The network I? is dual to I}. That is
I) = CN(n,2[logn] — 1,{1,...,n}, L),

where L = (L1, ..., Laniogn]—1), and Ly = {(n —j+1,n—i+1) | (i,5) € Lj},
where L} denotes the ith layer of I}.

Lemma 4.12 The network I (respectively IC) sorts any zero-one input se-
quence that has been obtained from a sorted zero-ome sequence by changing a
single zero into a one (respectively, a single one into a zero).

Proof. We prove only the lemma for I'. The proof for I? is analogous.
For n = 2, the lemma is obviously true. Let n = 2™, for some m > 1. Let
a = (ai1,...,a,) be a zero-one sequence obtained from a sorted sequence by

changing a single zero element into a one. Let o’ = (af,...,al) be a sequence

’r'n

that is a result of applying the first layer of I! to the sequence a. Then the
subsequence b of a’ on the even registers is sorted. The subsequence b’ of a’ on
the odd registers can be obtained from a sorted sequence by changing a single
zero into a one. The number of ones in ' is not less than the number of ones
in b and not greater than the number of ones in b plus one. Let ¢ = (c1,...,¢y)
be a sequence obtained by applying the next 2m — 3 layers of I} to a’. The
subsequence d of ¢ on even registers is equal to b, since these layers contain no
comparators with even registers. The subsequence d' of ¢ on odd registers is a
sorted sequence ', since these layers are the mapping of the layers of I}L /2 ON
the odd registers. If the number of ones in d' is equal to the number of ones in
d, then c is already sorted. Otherwise the number of ones in d’ is at most one
more than the number of ones in d. The last layer of I} shifts the first one in ¢
into next even register and the output becomes sorted.

Note that the network I;rlcg 1 sorts all the zero-one sequences obtained from
a sorted zero-one sequence by changing a single zero into a one that have only
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ones in registers greater than n. Thus for n that is not a power of two, the
lemma follows from Corollary 2.14. O

In the following definitions we introduce a notion of a k-merge version of a
comparator network M: a comparator network obtained from M by replacing
the registers of M by the buckets of k registers and by replacing the comparators
of M by the merging subnetworks on the corresponding pairs of buckets.

Let BMy = CN(2k, my, {1,...,2k}, B) denote the Batcher merging network
for two sorted sequences placed in the registers {1,...,k} and {k+1,...,2k}.
Let BSy = CN(k,dg,{1,...,k}, B") denote the Batcher sorting network for the
sequences of length k.

Definition 4.13 Let k > 0. Fori # j, let
fig oAl 2k} = {E-Dk+1,...,ik}U{(yF-Dk+1,...,jk}
be a bijection defined as follows:

fij(x) —{ G-Dk+((x—k) ifz>k

Let M = CN(n,d,R,L), where R ={1,...,n} and L = (L1,...,Lq). We
call a network My, = CN(kn,myd, R',L") a k-merge version of M if and only
if R = {1,...,kn}, and L' = L}...L), where for each t, 1 < t < d, the
subsequence of layers Ly is the union of f; j-mappings of B for all (i,j) € L.

Let B" be a union of f;-mappings of B', where 1 < i < n and fi(z) =
(i—1)k+x. Let M, = CN(kn,d; + mpd,R',B"L"). We call Mj, an extended
k-merge version of M.

For 1 <i < n we call a subset of registers K; = {r | (i — D)k +1<1i < ik}
the ith bucket of M;,.

Lemma 4.14 Let S, = CN(n,d,{1,...,n},L) be a 1-correction network of
depth d for the input sequences of length n. Let S, be the extended k merge
version of Sy. Then the Sy 1 is a k-correction network for the input sequences
of length kn.

Proof. Let a = (a1,...,ank) be a k-disturbed 0-1 sequence. Let = denote
the number of zeroes in a. (We assume that z > 0.) Let a’ = (a},...,al,;) be
a sequence obtained after sorting the buckets within the first dj, layers of Sy j
(where dy, is the depth of the Batcher sorting network BS} used in construction
of the Sy, ). Let 2" = [z/k]. Thus bucket 2’ is the last one that intersects the
Zero area.

We show that after application of the remaining part of S, 1, to the sequence
(af,...,a},) all the buckets with indices greater than z' will be cleared from
zeroes. Analogous reasoning can be used to show that all the buckets with the
numbers less than z’ will be cleared from ones. Since all the buckets remain
sorted this implies that the whole output is also sorted.

For 1 <v <y <w < n,let v,4, denote a sequence obtained from the
sorted 0-1 sequence with exactly y zeroes by changing a zero on position v into
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a one and a one on position w into a zero. Let d, . , denote the minimal d
such that after applying the first d layers of S,, on input 7,,.,, We get a sorted
sequence. Note that the layer d, 4, , is the first and the only layer within which
the displaced zero is compared with the displaced one.

We consider all displaced zeroes in a’ in buckets z' +1,...,n. We show that
Sp,k gets rid of displaced zeroes in these buckets. In the same way, we may show
that Sy, 1 gets rid of displaced ones in buckets 1,...,z" — 1. Since S, outputs
bucket z' in a sorted state, it follows that the whole output is sorted.

Let m be the number of zeroes in buckets =’ +1,...,n in o’ and let W
denote the set of their positions. All these zeroes are, of course, displaced. Let
I denote the number of ones in buckets 1 through 2’ in o' and let V' be the set
of their positions (some of these ones are displaced, those from bucket z' are
not necessarily displaced). Obviously, m <1 and m < k. For each j € W, we
choose an ¢ € V using an inductive procedure based on the following conditions:

e Weset Vg =V and Wy = W.
e Foreacht, 1<t <m,

— we set 4 = v and j; = w, where is (v,w) is one of the pairs from
Vi—1 x Wi—1 that minimizes the value df, /47 1w/k1,2» and
— we set, ‘/t = Vvt,1 \ {Zt} and Wt = Wt,1 \ {]t}

The idea is the following. A displaced zero terminates to be displaced at the
moment when the bucket containing it is merged with a bucket with an index
at most 2’ and containing a one. In fact, if the second bucket contains less ones
than there are zeroes in the first bucket, then some of the zeroes must remain
in the first bucket and are still displaced. For any displaced zero, our definition
fixes a one that may cause the zero to finish its status of an displaced element.

Let vy w,y,¢+ denote the sequence stored in the registers of S, after applying
the first ¢ layers of S;, on input 7, 4,y For 1 < i < n and t > 0, let p;,
denote the number of sequences among i, /k1,1j, /k1,e' 5 -+ Vim /K, [im /K] ,2"
that contain ones at position i. Let p}, denote the number of ones in bucket i
after applying the first dy, + ¢ - ¢x layers of S, x to input a (where ¢, is a depth
of a Batcher merging network BM}, used in construction of Sy, ). We prove the
following technical claim:

Claim 4.15 1. If1<i<2a', then piy < pj,.
That is, the number of ones in the bucket i at moment t is at least p; ;.

2. If ' <i<n, thenm —p;s > k—p,.

That is, the number of zeroes in the bucket i at moment t is at most
m — Pit-

Proof of the claim. The proof is by induction on t.

For t = 0 the properties follow from the way we have defined the sequences
i1y« 50m and j1,...,Jm. (Property 1is implied by {i1,...,i,} C V and Prop-
erty 2 is implied by W C {j1,...,Jm}.)

Let t > 0. For each register R; of Sp,, 1 < ¢ < n, there are three possibilities:
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Case 1. There is no comparator incident to R; in layer ¢ of S,,.
Case 2. There is an comparator (R;, R;) in layer ¢ of S,,.
Case 3. There is an comparator (R;, R;) in layer ¢t of S,,.

The first case is trivial. We have p;; = p;—1 and pj, = p;, ;, so Properties 1
and 2 of the claim follow from the induction hypothesis.

Proof of Property 1 of Claim 4.15. Let 1 <i <<z
In the second case,

Pit = Pit—1 + Pjt—1

and, as always, p;; <m < k. In S, j there is a network merging buckets j and
i in the corresponding layers. Thus

Py = min{k,pl, 4 + 051}

(since if we merge two buckets containing initially ¢ and b ones, the one with a
bigger index will contain min{k, a+b} ones). Combining this with the induction
hypothesis we get p;,; < p; ;.

In the third case, there are two sub-cases: either j < 2’ or j > 2'. If j < 2’|
then p;; = 0 and hence p;; < p;,. The reason is that a one in each of the
sequences Yr;, /k],[j,/k].2',¢t—1 can freely move to any position j, i < j < z'.

The sub-case j > z' is more tedious. We claim that

pit < max{0,p;r—1 — (M —pji—1)}

Indeed, if v, /47,1, /k],2",t—1 contains a displaced one at position ¢ and a dis-
placed zero at position j, then r; /17,15, /8],2/,¢ contains a zero at position i.
Therefore it contributes to the decrease of p;. So if p;: > max{0,p;+—1 —
(m — pj—1)}, then there are two different pairs (i, jr) and (i,, ) such that
Yli, /k1.[jn /K], ¢ cOntains a displaced one at position i and vp; , /&1,15,, /K]0 ¢
contains a displaced zero at position j. Then of course, d;, /i1, /41,20 > t and
dri ., /k1.[4,0 /k],20 > 1, since we have detected displaced elements after step ¢ on
positions, respectively, i and j. On the other hand, dp;, /x1,15,, /81,20 < t, since
in the worst case the displaced zero and displaced one meet at layer t. So we
should have chosen a pair (i,, ) instead of the first of (i,,,) and (i, jr)-
On the other hand,

p;,t = maX{Oap;,tﬂ —(k _p;',tfl)}'

By the induction hypothesis, pi;—1 < p;,_; and (m —pji-1) > (b —pj,_q).
Combining all this we get p;; < p; ;.
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Proof of Property 2 of Claim 4.15. Let 2’ +1<i<n.

In the second case, there are two sub-cases possible: either j > 2’ or j < 2.
In the first sub-case k — p; , = 0, since the total number of zeroes in buckets j
and ¢ is not greater than m, m < k, and the corresponding merging sub-network
moves all the zeroes to the jth bucket. Hence Property 2 holds.

Now consider the second sub-case. Note that

m —pig > (M — Pig—1) — Pji—1,

since in at most pj—1 cases ;. k1,14, /k],a',t—1 COntainsg a one on position j.
Thus, for at most p;—1 cases a zero at position i is exchanged with a one at
step t. On the other hand,

k—p;; =max{0, (k= pi; 1) —Pjs 1}

By the induction hypothesis, k —p;, ; <m —p;;—1 and pjr—1 < pj,; ;. Hence
k _p;',t <m—pig.
In the third case

m—piz = (m—piz—1)+ (m —pji—1)

and
ke — piy = min{k, (k —pj,_,) + (k —pj, 1)}

So Claim 4.15 follows by the induction hypothesis.

Since S, sorts each sequence v, /x1,1j1 /k],2/ ¢ through yri /i1, 1j0 /k1,20 8> WE
have p;;, = m, for i > 2’ and for ¢ equal to the depth of S,,. By Claim 4.15(b),
p;; must be also equal m, for i > z' (i.e. the ith bucket must not contain
zeroes). Thus Lemma 4.14 follows from Claim 4.15(b) and its dual version for
ones (which we skip here). O

4.3 Construction of correction network N,

In this section we describe the construction of the k-correction network for
k-disturbed sequences of length n > 256, where 3 < k < %nm This
network will be denoted by N, = (n,D,{1,...,n},L). By R we denote the
set of registers of Ny, 1, (ie. {1,...,n}).

The sequence L of layers of Ny ; is divided into five parts called phases.
(Thus L = P, P, P; Py Ps, where P; denotes the ith phase.) Construction of each
phase is described in a separate subsection.

We assume that n is divisible by nsy, where ns is defined in the description
of Phase 4 of the network. Here we only assume that ns is even and no > 2k.

First we arrange the n registers of N, in a matrix M of size ny x ns,
where ny = n/ny (i.e. ny is the number of rows and ns is the number of
columns) in the row-major order. The rows are numbered 1 through n; starting
at the top of the matrix and the columns are numbered 1 through ny starting
at the leftmost column. So the ith row (denoted by ROW;) contains registers
(i—1)-m2+1,...,i-n2, the jth column (denoted by COL;) contains the registers
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Figure 9: Configuration of zeroes and ones in M after Phase 1

j+ (kE—1)-ng, for 1 <k <mny. We use a convention that for i < 1 or i > ny,
ROW; =0 and for j < 1 or j > ns, COL; = .

Definition 4.16 For any zero-one configuration ¢ of R we define y. as [x/n1]
where © = |{i | ¢(i) = 0}]

Note that the rows 1,...,y. — 1, are contained in the zeroes area of ¢ and
the rows y. + 1,...,n; are contained in the ones area. ROW,_ may intersect
both areas.

By S, we denote the Schimmler and Starke [15] network for input of size n.
S, is a network of depth 2[logn] — 1 similar to IJ and I} that is a complete
1-correction network (i.e. it sorts arbitrary 1-disturbed sequence). By S, we
denote the extended k-merge version of S,.

4.3.1 Phase 1l

Let L' be a {1,...,na}-restriction of the sequence of layers of Sy, i1,5. We
define layers P; as the union of f;-mappings of ROW;-restrictions of L', for
1<i<ng and fi(z) =na2(i — 1) + .

Lemma 4.17 Let ¢ be any k-disturbed configuration of R. Then for each i,
1 <i < ny, the ROW;-restriction of Py (c) is sorted.

Proof. Follows from Lemma 4.14 and from the fact that each ROW;-
restriction of ¢ is also k-disturbed. O
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Figure 10: A single right cluster in M and the ordering of registers inside the
cluster

Corollary 4.18 Let ¢ be any k-disturbed configuration of R over {0,1}. Then
the configuration ¢’ = Py (c) has following properties (see Fig. 9):

1. For each i, 1 <i <y, the sequence corresponding to ROW;-restriction of
c' is sorted and contains all its ones in the last k positions.

2. For each i, y. < © < ny, the sequence corresponding to ROW;-restriction
of ¢ is sorted and contains all its zeroes in the first k positions.

3. The sequence corresponding to ROW,_-restriction of ¢' is sorted.

4.3.2 Phase 2

The aim of Phases 2 and 3 is to move the displaced zeroes that are below the
row 9. + 1 to the leftmost column and the displaced ones that are above the
row y. — 1 to the rightmost column.

We partition the sub-matrix of k rightmost (respectively, leftmost) columns
into squares of size k x k. For each square contained in rightmost (respectively,
leftmost) columns, the subset consisting of the first £ — 1 columns of the square
and the last column of next lower square (respectively first column of the square
and the k — 1 last columns of the next lower square) is called a cluster (see Fig.
10).

During Phase 2 each cluster is sorted by a Batcher sorting network for input
size k2.

Let us describe this more formally. First we define the increasing func-
tion f; such that that the set f;({1,...,k*}) N R is the jth left cluster. If
fi({1,...,k®}) C R, then the register f;(i) is the ith register of the jth left
cluster according to their natural order.
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It is easy to check that f; is defined as follows for z € {1,...,k?}:
fi(z) = (j — Dkna + (z — 1)np + 1 if <k,
I = k4 ip—Dna+ (@—k) +1— (i, — D(k—1) ifz >k,

where i, = [£=£].

For each j, 0 < j < [ni/k], let CL; = f;({1,...,k*}) N R denote the jth
left cluster. Note that all the sets C'L; are pairwise disjoint. We call a subset
TL; = f;({1,...,k}) N R a tail of the jth left cluster. Note that each T'L; is
contained in COL; and intersects the rows (j — 1)k + 1 through jk. For each i,
1<i<k,wecallasubset RL;; = fi({k+(i—1)(k—1)+1,...,k+i(k—1)})NR
the ith row of the jth left cluster. Note that each RL; ; is contained in ROWj44
and intersects the columns 2 trough k. If i < 1 or i > k, then we assume that
RLj,i - @

In a similar way, we define the right clusters with the use of the following
increasing functions g;:

gj(x) = (j + L)kny — fr(k* —z 4+ 1) + 1.

For each j, 0 < j < [n1/k], let CR; = g;({1,...,k*}) N R denote the jth
right cluster. All the sets CR; are pairwise disjoint.

We call a subset TR; = g;({k* —k +1,...,k*}) N R a tail of the jth right
cluster. Each T'R; is contained in COL,,, and intersects the rows jk+ 1 through
(j + 1)k. For each i, 1 < i < k we call a subset RR;; = g¢;({(i — 1)(k —
1) +1,...,i(k = 1)}) N R the ith row of the CR;. Each RR;,; is contained in
ROW(;_1)k4i and intersects the columns ny — k through no — 1. If 4 < 1 or
i > k, then we assume that RR;; = 0.

Recall that BSj> denote a Batcher sorting network for the set of registers
{1,...,k?}. Let L' be a sequence of layers of BSy=. The sequence of layers
P, (i.e. of Phase 2) is the R-restriction of the union of f;-mappings and g;-
mappings of L', for 0 < j < [ny/k].

Let ¢ be any k-disturbed configuration of R over {0,1}. The configuration
¢’ = Py Py(c) has the following properties:

Fact 4.19 Let

v=| (J ROW;|\ U corL
1<i<yc ne—k<j<ns
and
p=| |J row;|\| |J coL
ye<i<ni 1<i<k

The U -restriction of ¢’ contains only zeroes and the D-restriction of ¢’ contains
only ones.
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Proof. Fact 4.19 follows immediately from the Corollary 4.18 and from the
fact that each comparator of the layers of P, is contained either in the k leftmost
or in the k rightmost columns of A/. O

Fact 4.20 Let

v'=| |J rROW;|\COL,,
1<i<ye
and
p'=| |J Row;|\cCOL,
Ye<i<ni

The U’ -restriction of ¢’ contains at most k — 1 ones and the D'-restriction of ¢’
contains at most k — 1 zeroes.

Proof. In configuration P (c) all the rows of M are sorted. The application
of P, does not decrease the number of ones in the rightmost column and does
not decrease the number of zeroes in the leftmost column. Hence at least one
of the ones that are above ROW,_ must remain in the rightmost column and
at least one of the zeroes that are below ROW, must remain in the leftmost
column. O

Fact 4.21 If CR; is (entirely) above the row y. of M, then the CR;-restriction
of ¢ has all its ones in its tail TR;.

Proof. For each cluster CR; lying entirely above the row y. the CR;-
restriction of Pj(c) contains at most k ones. The CRj-restriction of P;(c) is
sorted by P> and TR; contains the last k registers of CR;. O

Fact 4.22 If TR; intersects the row y. of M, then CRj-restriction of ¢ has all
its ones in TR; U RR; ..

Proof. By Fact 4.20 and the fact that CR;\T R is on the left side of COL,,,
and above ROW,_, there are at most k — 1 ones in (CR; \ T R;)-restriction of
¢’. Since (CR; \ T Rj)-restriction of ¢’ is sorted, all its ones must be in the last
row RR; . O

Fact 4.23 If (j — 1)k +i = y., for 1 < i < k, then the CRj-restriction of ¢
contains ones only in RR;; URR; ;.

Proof. Fact 4.23 follows from the fact that there are at most k — 1 ones in
the registers above the row y. of M in the CRj-restriction of ¢’ and that either
i = 1 or there is enough space for them in RR;;_;. O

Facts 4.24,4.25,and 4.26 are analogous to Facts 4.21,4.22 and 4.23 respec-
tively and can be proved in a similar way.

Fact 4.24 If CL; is (entirely) below the row y. of M, then the C'L;-restriction
of ¢ has all its zeroes in its tail TL;.
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Fact 4.25 If tail of TL; intersects the row y. of M, then CLj-restriction of ¢
has all its zeroes in TL; URL; ;.

Fact 4.26 If jk +i = y., 1 < i < k, then the CLj-restriction of ¢' contains
zeroes only in the RL;; URL; ;1.

Corollary 4.27 Let ¢ be any k-disturbed configuration of R over {0,1}. Let
J = [ye/k] and i = (y. mod k) + 1. The configuration ¢’ = Py Ps(c) has the
following properties:

1. All displaced ones of ¢ are in COL,, JRR;_1URR;; URR;;_1. The
number of ones in RR;_1 ; URR;;_1 is at most k — 1.

2. All displaced zeroes of ¢ are in COLy URLjy11 URL;; URLj ;1. The
number of zeroes in RLj 11 URL;j; 1 is at most k — 1.

Proof. The property 1 follows from Facts 4.21, 4.22 and 4.23. Analogously
the property 2 follows from Facts 4.24, 4.25 and 4.26. O

4.3.3 Phase 3

The aim of the third phase is to move all the displaced ones above ROW,_ into
ROW,,_1 UCOL,, and all the zeroes below ROW,_ into ROW,_ 41 UCOL;.

For this purpose we consider the unions F}; of the subsets (CL; \ RL;1)N
COL;1, with the singletons RLj;1,1 N COLg_;4+1, for the displaced zeros in
the left clusters, and the unions G;; of (CR; \ RR; ;) N COL,,,_j+; with the
singletons RR;_1,; N COL,,,_; (see the middle part of Fig. 11).

Below we define the functions f;; (respectively g;;) such that f;;(s) (re-
spectively g;:(s)) denotes the sth register of F}; (respectively, of G ;).

For 0 < j < [n/k], for 1 < i < k —1 let the f;; and g;; be mapping
functions over {1,...,k} defined as follows.

fii(z) = jkno +xns + 1414 ifx <k,
PR jkns +ans +k—i+1 ifrz =k,
(@) = (j—Dkna + (x — 1)ny — i ifz=1,
9T =0 G=Dkna+ (x—Vno —k+i ifz>1.
Note that fj,i({]-a N ].}) NR = (CLJ \ RLj’l) N COLi+1 and f],l({k}) N
R= RL]'+171 N COLk_H_l. Analogously, gj7i({27 ey k‘}) NR= (CR] \ RR]'JC) N
OOLng—IH—i and gj,i({l}) NR= RR]’—Lk N COan_i.
For 0 <j<[n/k]and 1 <i<k—1, we have
Fj7i = fj,i({L ) k}) apis
and
Gj,i = gj,i({L ) k}) NER.
The third phase P3 is defined as the R-restriction of the union of the f; ;-

mappings of INS? and the g; ;-mappings of INS}, for all j, 0 < j < [n/k] and
foralli, 1 <i<k-1.
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Claim 4.28 Let ¢ be a k-disturbed configuration of R over {0,1}. Let j =
[y./k]. Let ¢ = PiPy(c). Then

o The Gj;-restriction of ¢’ has at most one one above ROW,, and the se-
quence corresponding to G ;-restriction of ¢’ is either sorted or differs
from the sorted sequence only at the first position.

o The Fj;-restriction of ¢’ has at most one zero below ROW,, and the se-
quence corresponding to Fj ;-restriction of ¢’ is either sorted or differs from
the sorted sequence only at the last position.

Proof. The claim follows from definitions of F;; and Gj;. To see the
property for GG ;, note that if the first register of the G; ; and any of its remaining
registers both contain the ones, then the sum of the numbers of ones in the
corresponding rows of the right clusters must be greater than k& — 1. By Fact
4.20, it is possible only if the second register is below ROW,, _1. The part of
the sequence in the registers g;;(2) through g;;(k) is sorted, since the cluster
CR; is sorted. See Fig. 11. O

Lemma 4.29 Let ¢ be a k-disturbed configuration of R over {0,1}. Let ¢’ =
PP, Ps(c). Then ¢’ has following properties:

1. All registers that are above ROW,__y and on the left side of COL,, con-
tain only zeroes.

2. All registers of ROW,__1 on the left side of COL,,_r+1 contain only

ZETO0ES.

3. All registers below ROW,, 11 and on the right side of COL; contain only
ones.

4. All registers of ROW,,_11 on the right side of COLy, contain only ones.

Proof. We prove only the Properties 1 and 2. The Properties 3 and 4 are
dual and can be proved in an analogous way.

By Fact 4.19, all the ones above ROW,_ in P, P:(c) are in the k right-
most columns. By Claim 4.28 the sequence corresponding to G ;-restriction of
Py P5(c) has at most one one above ROW,, and has the structure that can be
sorted by INS;. Property 1 follows from the fact that each G ;-restriction of
Py P5(c) is sorted by the corresponding g;;-mapping of INS}.

By the Fact 4.19, the part of ROW, _; on the left side of COL,,_j+1
contains no ones in P, P>(c). Property 2 follows from the definition of Ps: All
the comparators of P3 with the second registers in the ROW,,__; on the left
side of COL,,,_r+1 have their first registers in the leftmost k columns above
ROW,,. By Fact 4.19, these registers must contain zeroes in P; P>(c). Thus no
such comparator can insert a one into ROW,__;. O

Fig. 11 illustrates what happens during Phase 3 in the two right clusters
that intersect the row y.. The leftmost part displays the placement of the ones
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upper cluster

row y,

1's 1's

lower cluster

Figure 11: The configuration transformation during the phase 3

in the last row of the upper cluster and in the row of the lower cluster that is
just above ROW,,_. The rightmost part shows the placement of these ones after
the application of P3. The middle part shows how the registers from the last
row of the upper cluster are grouped together in the phase P; with the columns
of the next lower cluster.

4.3.4 Phase 4

Phase 4 is the core part of the construction. It demonstrates the technique
of embedding the networks I}, and I) in the matrix of registers M of size
ni1 X ns in such a way that after application of P, all the displaced elements are
concentrated in at most three neighboring rows of M.

Trees of columns. Below we define the trees that will be used in description
of the construction of Pj.

Definition 4.30 Let Ty denote the tree with the edges labeled by positive inte-
gers, defined recursively as follows:

1. Ty contains only a single isolated vertex (a root of Tp).

2. Ford >0, Tq is a tree constructed from two copies of T_, (where T)_, is
created from Ty—1 by increasing the labels of all edges by one) by connecting
the root of the first T | as the new child of the root of the second T}
with a new edge labeled 1. The root of the second T} | is a root of Ty.

By a level of a node in Ty we denote its distance from the root (i.e. the level
of the root is 0, the level of any child of the root is 1, and so on). By Ty, we

38




Figure 12: Construction of Ty from T

denote the subtree of T, consisting of the nodes with the levels less or equal to
t. By aq: we denote the number of vertices of Ty ;.

Note that T} is isomorphic with a binomial tree. Since the binomial tree has
(?) vertices on the ith level, we have aqr = 35, (9).

Let T' = Toiogn)—1,[10g k]- L€t @ = aafiog n},l,ﬂozg x]- We can now define the
value of ny (and thus of ny): ne = 2a.

Construction of P,. We use the tree T to describe the construction of Pj.
Let V be a set of vertices of T and let vy € V' be a root of T'.
We define two sets of columns:

and
CSET, = {COLl | n2/2 <1< ng— ].}

By Lemma 4.29 and by the fact that ny > 2k the following holds.

Claim 4.31 Let c be a k-disturbed configuration over {0,1}. Let ¢’ = P, P,Ps(c).
If COL; € CSET:, then COL;-restriction of ¢’ has only zeroes above ROW,,, .
If COL; € CSETy, then COL;-restriction of ¢ has only ones below ROW,,..

Let
COlo V= {OOLl} U CSETO

be any bijection such that colg(vg) = COL;. Symmetrically, let
(3011 V= {COLnQ} U CSETl

be any bijection such that col;(vg) = COL,,. Let col; ' denote the reverse
function of col;, for 7 € {0,1}.
The phase Py = (Py1,. .., Py afiogn]—2) is defined as follows:

e The columns {COL,,}UCSET; of M contain the embedding of I} . The
comparators of P, in this part of M are defined as follows:
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— For each 1,1 <1 < 2[logn] —1, for each column COL; € {COL,,}U
CSET, such that col{'(COL;) = vy or the vertex col] ' (COL;) is
connected with its parent by an edge with a label less than [, there is
a comparator (rq,72) in Py o;—1 if and only if {r1} = ROW;, NCOL;
and {r.} = ROW;, N COL; and the [th layer of I} contains the
comparator (ji, j2).

— For each I, 1 <1 < 2[logn] —1, for each column COL; € {COL,,}U
CSET, such that the vertex v; = col; '(COL;) is connected with its
child v} by an edge with a label I, there is a comparator (1, r2) in Py o
if and only if {r1} = ROW;, N COL; and {r:} = ROW;, N coly (v}),
and the lth layer of I}Ll contains the comparator (ji, j2)-

e Analogously we define the embedding of I? in the columns {COL,} U
CSET,.

The idea behind the construction is the following one: Consider the displaced
ones in COL,,. We want to move them down to the row at least y. — 1.
Initially, COL,,, contains at most k ones above ROW,, (displaced ones) and
the columns from C'SET; contain no ones above ROW,,. (we say they are clean).
Any displaced one falls down inside its column through the comparators in the
odd layers of P, until it is blocked by another displaced one. In that case,
the corresponding comparator in the next even layer of P, moves the blocked
one to the register in some clean column to the same row that it would have
reached if it had not been blocked. Note the clean column ¢’ that can receive
displaced ones from a column c in the layer P, 5 corresponds to a child of the
vertex corresponding to ¢. On the other hand, ¢ can move at most half of its
displaced ones to ¢’. That means that the columns corresponding to the vertices
on the level [log k] will receive at most one displaced one and will never have
collisions between displaced elements. That is why we could clip T510g -1 tO
Tlog n]—1,[log k] 10 Our construction.

Lemma 4.32 Let ¢ be any k-disturbed configuration of R over {0,1}. Let ¢’ =
PP, P3Py(c). Then ¢’ has only zeroes above the ROW,__1 and only ones below
the ROWyC+1.

Proof. We prove only that ¢’ has no ones above ROW,,__;. The proof that
¢’ has no zeroes below ROW,, 11 is analogous.

Let XO = COLlUUC’OLieCSETO COLl Let X1 = OOLTLzUUCOLieC’SETl COLl
Note that each comparator of phase P, has both its registers either in X, or in
X;.

Since Xy-restriction of the configuration ¢ = P; P, P;(c) has no ones above
ROW,__; and Py is a sequence of standard layers, there are also no ones above
ROW,,_1 in the Xy-restriction of ¢'.

Thus we have to show only that all the ones that are above the ROW,_ _;
in the X;j-restriction of ¢ will be moved out of this region by Pj.
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Claim 4.33 Let COL; be a column from CSET;. Let t be the label of the edge
connecting coly "(COL;) with its parent. Let 0 < t' < 2t. Then there are no
ones above ROW,, in the COL; restriction of Py ... Pyp(c")

Proof of the claim. By Claim 4.31, all columns of C'SET} have only zeroes
above ROW,,_ in configuration ¢”. The only column in the X;-restriction of ¢”
that may have ones above ROW,,_ is COLy,. Py is the first (and the only)
layer of P, that has comparators with the second register in COL; and the first
register from outside COL; (i.e. the only layer that can increase the number of
ones in COL;).

Claim 4.34 Let COL; be a column from CSET; U {COL,,}. Let!l be the
level of coly' (COL;) in T. Let m; be the number of ones above ROW,_ in the
COL;-restriction of the configuration Py; ...Py.(c"). Then max{m; |0 <t <
4[logn] — 2} < 27 k.

Proof of the claim. By induction on /. If I = 0, then COL; = COL,,
and the number of ones in this column above ROW,,_ is never greater than
k = 27%. If I > 0, then the number of ones above ROW,_ in the column
COL; such that col; '(COL;) is the parent of col; *(COL;), is never greater
than 2=(¢=Uk. There is only one layer P, in the phase P, that contains
comparators with the first register in COL; and the second register in COL;.
All the remaining layers of P, contain comparators with either both registers
in COL; or with the second register outside COL;. Before application of Py s
there are no ones above ROW,_ in COL;. The comparator (ri,r2) of Py can
move a one from COL; to COL; if and only if the comparator (rq,r5) from the
phase P, 41 with both registers in COL; had ones in its both registers. There
are at most 2~ k/2 = 27!k such comparators.

Claim 4.35 Letm be the number of ones above ROW,,_ in the COL,, -restriction
of ¢". (Note that m < k.) Let s1,...,8, be the increasing sequence of all their
row positions. Let ¢10,...,Cmo be a sequence of configurations of {1,...,n1}
over {0,1}, such that

ciolj) = { 0 otherwise.

Let ciy be a result of application of the subsequence of t initial layers of I to
the configuration c;o. Let s;; be the (unique) number such that s;; < y. and

cit(sie) = 1. Let ¢} = Pyqy...Pyio(c"). Let my be a number of rows above
ROW,_ that contain ones in the Xi-restriction of c, and let s{,,... sy, , be

the increasing sequence of their indexes. Then

{$14r--»Smt} = {s'l',t, e an,t}-

Proof of the claim. By induction on ¢. The case for ty follows from
the facts that each s; o = s; and all the ones above ROW,_ in X;-restriction
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of ¢" are in COL,,. Let t > 0. We have to show that if {si,...,8m:} =
{874 oSt} then {st e,y Sme1t = {87441, Sty e41 ). Note that
either s; 41 = s;, or there is an comparator (s;, s;¢+1) in the tth layer of I}Ll
and s;¢11 < Y. If there are any ones above ROW,,_ in the COL;-restriction of
¢, then col ' (COL;) either is a root of T' or must be connected with its parent
by an edge with the label not greater than ¢. By the definition of Py, either:

e there are comparators (r1,r2) in Py opyr; and (r1,75) in Py opq2 such that

— {r1} =COL; N ROWj,, and
— {ro} = COL; " ROW, and

Sit+1

- {ry} =COL; " ROW, ..,

where col; ' (COL;) is a child of col; '(COL;) connected with it by an
edge with the label t + 1, or

e thereis only the comparator (r1,r2) in Py 2;+1 and the level of coll_1 (COoL;)
in T is [logk].

By the Claim 4.34, in the second case there is at most single one above
ROW,, in COL; and it will be shifted by the comparator (ri,rs) from the
ROW;, , to the ROW,,, ..

By the Claim 4.33, in the first case the one from r; is shifted to r2 or to rj,
since Py at4+1(cy)(ry) = 0.

Lemma 4.32 follows from the fact that by Lemma 4.12 {s14,...,8m+} C
{ye — 1}, for t = 2[logn] — 1. O

4.3.5 Phase 5

By Lemma 4.32, after application of the phases Py P, P3 Py to a k-disturbed zero-
one configuration ¢ there are only zeroes above ROW,,_; and only ones below
ROW,_41. Let ¢ = PiP,P3Py(c). (ROW,,_1 UROW,, )-restriction of ¢’ and
(ROW,, U ROW),,_41)-restriction of ¢’ are k-disturbed, since ¢’ is k-disturbed.
The last phase Ps is defined as follows:

Ps = PLP'P}",

where P, P!' and P;" are defined below.

Let L be a {1,...,2ny}-restriction of the subsequence of layers of Stap, /k7,k-
(Recall that this is the extended k-merge version of the Schimmler Starke 1-
correction network.) Let P! be the R-restriction of a union of the f;-mappings
of L, where f;(z) = 2nsi + .

Let M be a sequence of layers of BM,,, (the Batcher merging networks
for two sorted sequences of length 2ny stored in the registers {1,...,2n2} and
{2n2 4+ 1,...,4n2}). Let P{ (respectively P.") be the R-restriction of a union
of the g;-mappings (respectively gi-mappings) of M, where g;(z) = 4nq2i + x
(respectively gi(z) = gi(x) + 2n3).

The following lemma states that IV, ;, is a k-correction network.
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Lemma 4.36 Let ¢ be any k-disturbed configuration of R over {0,1}. Then
¢ = PP, P; P, Ps(c) is sorted.

Proof. The configuration ¢’ = P, P, P; Py P!(c) has following properties:

e for i > 1, the (ROWo;_1 U ROWS5;)-restriction of ¢” is sorted (by Lemma
4.14).

e Let ig = [(y.+ 1)/2]. Then 2(ip — 2) + 1 < y. — 1, so ¢ has only zeroes
above ROWs(j,—2)41. (Since, by Lemma 4.32, all displaced elements of ¢”
are contained in ROW,__1 UROW,, UROW,_;.) Similarly, 2iy > y.+1,
so ¢’ has only ones below ROW»;, .

It is enough to sort the fragment of ¢’ contained in the rows 2(ip—2)+1 through
2i0. Both (ROWQiO_g UROWQiO_Q)—restriction of ¢" and (ROWQiO_l UROWQZ'O)—
restriction of ¢ are sorted. Thus all we have to do is merge the subsequences
contained in ROWo;,_3 U ROWs;,_2 and ROWas;,_1 U ROW,;,. We do not
know the parity of ig. If ig is even, then already P!'(c¢") is sorted. Otherwise
P!'(c") =" and PY'(PY(c')) is sorted. O

4.3.6 Estimation of the depth of IV, ;

For any positive integer i, let m; denote the depth of the Batcher merging
network BM; that merges two sequences of length i each, and let d; denote
the depth of the Batcher sorting network BS; for input of size i. Then m; =
1+ [logi] and d; = %

The depth p; of the phase P is equal to the depth of Sy, /x7,%- Thus

= du -+ (2flogina /1] — 1) = (EEL 4 2ftogTna /7] - 1)

3 3 3
< my <(logk)/2 + 2log(na/k) + 5) = my, (210g;n2 ~5 logk + 5)
< 2logns(1+ [logk]) — glogk - glong + g + gﬂogk]
< 2logna(1+ [logk]) — glog2 k+3.
Analogously the depth p§ of Py (the depth of Sra,,/47,) is not greater than

2log(2n2)(1 + [logk]) — glog2 k+3.

The depth pf of P (and of P:") is equal to the depth of BMa,,, so pf =
1+ [log(2n2)]. Thus the depth of phase Ps is equal to

3
ps = ph + 2p! < 2log(2n2)(1 + [logk]) — 5 log? k 4+ 3 + 2 + 2[log(2n2)]
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3
< 2log(2n2)(2 + [logk]) — 3 log? k + 7.
The depth ps of P> is equal to the depth of BS):

[log (k)]

P2 = djz = my2 5

< 2(1+1logk)? =2log” k + 4logk + 2.
The depth p3 of the phase P; is equal to the depth of INS} (or INSY?):
ps = [logk] <logk + 1.

The depth ps of Py is twice the depth of I} (or IQ ).
ps = 4[log(n/n2)] — 2 < 4logn — 4logns + 2.

The depth of P can be estimated as follows:
3
p=p1+p2+p3+pit+ps < <210gn2(1 + [logk]) — Elong -|-3>

+(2log” k + 4logk + 2) + (logk + 1) + (4logn — 4logn, + 2)

+ <2 log(2n2)(2 + [log k1) — ;log2 k+ 7)

Finally
1
p < 4logn + 4logns <5+|—logk]> —log®k + Tlogk + 21 (2)

We have to estimate n2. Recall that no (the number of columns of the matrix
of registers M) is twice the number of vertices of the tree T'. On the other hand
T is a subtree of the binomial tree Th[ig,]—1, consisting of the vertices on the
levels not greater than [logk]. The number of the vertices on the ith level of

Ty, is (”:) Thus
[log k]
=23 (2(logjz1 - 1) 3)

. )
i=0

Lemma 4.37 (due to Marek Piotréw) If n > 256 and 3 < k < %nHlosllosn,
then logny < [logk](loglogn + 2) and ne < n/k.

Proof. By an easy induction one can prove that

5 (D)= () 2

for m > 2 and j < L. In our case

logn (2[logn] —1) +1

3

[log k] < { w < Z[logn] <

3 +loglogn
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Therefore, we can apply the inequality (4) to the sum (3) without the last term

and obtain 2 11
ogn| —
< .
<t () )

By Stirling formula, we have the following well-known upper bound:

()= (%)

Applying this to (5) and taking logarithm of both sides we get

e(2+ l/logn)>
[log k]

Due to our assumption about k and n, [logk] > 2 and logn > 8, and therefore
the expression in the first parenthesis is bounded by 0.2 and

logns < (2 — 1log(r[logk])) + [logk] <log logn + log

e(2+1/logn)
——F—= < 1.6.
floghl =

The first part of lemma follows. The second one is a simple consequence of the
first part and the upper bound on k:

log

logn
logk| <14logk < —————
[log k] < 1+logk < 3 +loglogn
and n
logns < [log k] (loglogn + 3) — logk < log 7
O

Lemma 4.37 shows that the construction is correct: the required number of
columns does not exceed the total number of registers and there are at least k
rows.

If n > 256 and 3 < k < %nm, then by Lemma 4.37 and by the
estimation (2) we have:

1
p < 4logn + 4[log k] (loglogn + 2) (5 + flogk]) —log’ k4 Tlogk + 21
< 4logn + 4[log k]2 loglog n + 2[log k] loglogn + 7log® k + 11log k + 33

Thus
p = 4logn + O(log? kloglogn).
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5 Periodic correction networks

In this section we consider the problem of sorting k-disturbed sequences with
the periodic networks of a constant depth. We start in Section 5.1 with a
presentation of a simple periodic 1-correction network of depth 4 that works in
O(logn) iterations, and then in Section 5.2 we present a periodic k-correction
network of depth 8 that works in O(k + logn) iterations.

5.1 A simple periodic 1-correction network

In this section we define a simple 1-correction network H; on 2! - 2I registers
{0,...,2" - 21 —1}.

We start with a definition of two auxiliary networks G; and Gj. Let N; =
2L +1).

Definition 5.1 Letl be a positive integer. Let
g :{0,...,1} x{0,...,2' =1} = {0,...,N; — 1}
be a bijection defined as follows:
gi(z,y) =z + (I + y.

We assume that the registers are arranged in a matrix, where the register
gi(x,y) is placed in column z and row y. (The rows and columns are numbered
from zero.)

Definition 5.2 For a positive integerl, we define a network G; = CN(N;,4,R, L),
where R ={0,...,N; — 1}, L = (Lo, L1, Lo, L3), and (see Fig. 13):

* Lo = {(ai(z,y), qi(z + L,y + 2'7*7)) | s even, 0 <z <1, 0 <y <
2[ _zlfmfl},

o L1 = {(gi(z,y),q1(x+ 1,9)) |z is even, 0 <2 <1, 0 <y <2},

o Ly = {(gi(z,y), qi(x + L,y + 277N |z isodd, 0 <z < I, 0 <
2[ _QIfmfl}

AN
S
7AN

)

o Ly = {(gi(z,y). gz + 1,y)) |z is odd, 0 <z <1, 0 <y <2'}.
We define a network G that is symmetrical to Gi:

Definition 5.3 For a positive integer | and R = {0,...,N; — 1} we define a
network
G; =CN(N,4,R, (Lb,L'l,L'Q, L'3)),

such that for each i, 0 <1i <3,
L; = {(’I‘l,’I‘g) | (Nl —-1- T‘Q,Nl —-1- 7‘1) S Ll},

where L; is the ith layer of the network Gj.
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Figure 13: The layers of Gs5.

We arrange the registers of H; into a matrix that contains in column z and
row y the register h;(z,y), where the function h; is defined as follows.
Definition 5.4 Let [ be a positive integer. Let

h - {0,...,20 =1} x {0,...,2' =1} = {0,...,2" - 21 — 1}

be a bijection defined as follows:
hi(z,y) =z + 2ly.

Below we define two functions m; and m; that are used for mapping the
layers of respectively G; and G into H;.

Definition 5.5 Let
my:{0,... Ny =1} = h({l —1,...,2l =1} x {0,...,2 —1})

and
mj:{0,...,N; — 1} = hy({0,...,1} x {0,...,2" = 1})

(where (X xY) = {lu(z,y) | z € X, y € Y}) be two mapping functions
defined as follows. For each 0 < z <, for each 0 <y < 2!,

mi(gi(z,y)) = hi(x +1-1,y)

and
m;(gl(xa y)) = hl(xa y)

The network H; is defined as follows.
Definition 5.6 For a positive integer | we define the network H; = CN (2 -

20,4, R, L") (see Fig. 14), where R = {0,...,2"-21—1}, L" = (L}, LY, LY, LY),
and:

47



Figure 14: The network Hs. The layers Lj and LY are drawn with the solid
lines and the layers LY and L are drawn with the dashed lines.

e Foreacht € {0,1,2,3}, the layer L} contains the union of the m;-mapping
!

of Ly and the mj-mapping of Ly, where L, and L} are the tth layers of G,
and G| respectively, and

e the layer LI1I+2(1 mod 2) Contains additionally the set of comparators {(m (21—

Ly), la(0,y +1)) |0 <y <2'—1}, and
e there are no other comparators in Hj.

Note that the corresponding mappings of L; and Lj, for ¢t € {0,1} are not
disjoint. (The two middle columns of H; are in the images of both mappings.)
However, the definition is correct because the comparators from the two map-
pings either are identical or contain no common registers.

Note that the layers of H; are symmetrical (i.e. there is a comparator (i, j)
in the layer L} if and only if there is a comparator (n —1 — j,n — 1 —4) in the
same layer, where n = 2! - 2/ is the number of registers).

Lemma 5.7 There exist a constant d such that for any l > 0, the network H;
sorts any 1-disturbed configuration in dl iterations.

Proof. Let ¢ be a 1-disturbed zero-one configuration on the registers of H;.
Let z denote the number of zeroes in c. Let y; = |57 |. That is, y, is the index of
the first row of H; that intersects the ones area. (The rows are numbered from
zero.) Let r; be the first register containing a one after ¢ steps of computation of
H; (i.e. after application of the sequence of layers (L ... L{)/4 Ll . Ly ).
Let ' be the minimal ¢ such that either v, > h;(0,y.) (i.e. the displaced 1 is
already in the row y') or r, = hy(I — 1,y) for some y (i.e. r; is in the column
I-1).
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Claim 5.8 t' < 4.

The claim follows from the fact that there is at most one one above the row
y., and as long as it is above the row ¥/, it is shifted every two steps to the next
column on the right side or to the column 0 if it is in the column 2] — 1. (We
say that the 1 is moved to the next (modulo 21) column on the right side.)

Let ¢ be a minimal step number ¢ such that =, > h;(0,y.) — 1.

Claim 5.9 t'" <t + 2.

If ry > hy(0,y.), then ¢t < t' and the claim holds. Otherwise, assume that
ry is in the column [ — 1 above the row y/.. The first layer that can move a single
displaced one from the register ry = hy(l — 1,y) is Ly or LY. If the distance
between the row y and the row %/, is greater than 2!~!, then the layer LJ moves
the displaced one to the row y + 2!=! in the column [, otherwise L} moves the
displaced one to the register h;(l,y). In either case the distance between the
displaced element and the row y’ is not greater than 2!"!. In a similar way,
it can be shown by induction that after the step ' + 2¢, where 1 < ¢t < [, the
displaced one is in the column [ — 1 4+ ¢t and the distance between its row and
the row ¥/, is at most 2!~*.

Claim 5.10 After 6l steps the configuration is at most 2l + 2-dirty.

The claim follows from the fact that the network is symmetrical, and after
61 steps the index of the first register that contains a one is at least h;(0,y.) — 1
and the index of the last register that contains a zero is at most h; (2 —1,y.) + 1.

Now the lemma follows directly from Claim 5.10 and Lemma 3.4. O

For an arbitrary n > 0, we can construct a 1-correction periodic network

of depth 4 for input sequences of size n as the {0,...,n — 1} restriction of
the network Hjy, where I’ is the minimal ! such that 2 -2/ > n. Note that
I € O(logn).

It is not clear how does the network H; work for the k-disturbed configuration
for the larger values of k. It can be shown easily, by considering each displaced
element separately that the upper bound on the time needed for sorting such a
configuration is O(kl).

In the next section we construct a periodic network of a constant depth that
sorts any k-disturbed configuration in O(logn + k) iterations.

5.2 Periodic k-correction network

The main problem with the k-disturbed sequences in the network Hj, for greater
values k, is that a displaced one that starts falling in the column [ — 1 and is
blocked by the other displaced one, may need a full rotation through all the
columns to get another chance of falling down to the proper row. In this section
we overcome to some extend this problem.

The layers B; ; and Bl’7i, defined below, will be used in the description of the
k-correction network.
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Definition 5.11 For [ > 0, we define four layers Bjo, Bi1, Bj,, B, on the
registers {0,...,N; — 1} as follows (see Fig. 15):

i Bl’o = {(gl(l' + lay)agl(xay + 217I71)) | T is even, 0<z< l7 0< y <
2[ _QIfzfl},

e By = {(a(z + Ly), g,y +27"71) | zis odd, 0 < 2 < I, 0
2l _ 2[—95—1},

IN

y <

® By ={(ri,r2) | (Nt =1 —r2, Ny —1—r1) € Bio},
e By ={(ri,r2) | (Nt =1 =13, Ny —1—r1) € Bi1 }.

Definition 5.12 For [ > 0 and the register sequence R = {0,...,N; — 1} we
define F; and F] as follows (see Fig. 16):

e Fi = CN(N;,4,R,(Ly,Bi10,L3,Bi,1)), where Ly and Lz are the layers
introduced in Definition 5.2.

o I/ = CN(Ni,4,R, (L}, By, L3, By 1)), where L and Ly are layers intro-
duced in Definition 5.5.

Now we can describe our main network. Let I > 1 and w’ > 1 be integers.
Let w = 2(1+ 1+ w'), h = 2" and n = wh. Let R = {0,...,n — 1}. We define a
function

r:{0,...,w—1}x{0,...,h—1} = {0,...,n — 1}
by
r(@,y) = 2 + wy.

We arrange the registers in a matrix where the register r(z,y) is placed in

column z and row y.
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Figure 16: The networks F3 and Fj: the layers B3 o, B3 1 of F3 and the layers
By o, B of F3 are drawn with dashed lines.

We define the following two mapping functions m and m' that are used for
placing the layers of F; and F} on the registers of our network. For 0 < z <,
0<y<2 -1,

m(gi(z,y)) = r(w/2 +z,y)
and
m(gu(z,y)) =r(w/2-1-1+z,y),

where g; is the function defined in Definition 5.1.

Below we define our main network P, . For this purpose, we describe first
auxiliary sequences of layers Y = (Yp,Y1,Y3,Y3) and J = (Jo, J1, J2, J3).

Let (Ao, A1, A2, A3) denote the sequence of layers of F; and (Aj, A}, A}, A%)
denote the sequence of layers of F}. Let Y = (Y,Y7,Y3,Y3) be a sequence of
layers, such that Y; is the union of the m-mapping of 4; and the m'-mapping
of A} (see Fig. 17). Note that in the matrix presentation (i.e. when the
register 7(z,y) is placed in column z and row y) Y contains the mappings of
the layers of F} and Fj, where the mapping of F] is placed at the columns
w/2—-1-1,...,w/2—1 (where the columns are numbered from zero to w — 1)
and the mapping of Fj is placed at the columns w/2,...,w/2+1[. Note that the
layer Y, contains only comparators of the form (r(z,y),r(z + 1,y)) while the
layer V) contains comparators of the form (r(x+1,y; ), r(z,y2)), where the parity
of z is the same as the parity of w/2. The layer Y> contains only comparators
of the form (r(z,y),r(z + 1,y)), while the layer Y3 contains comparators of the
form (r(z + 1,y1),7(z,y2)), where the parity of x is the same as the parity of
w/2+1.

Let J = (Jo, J1, J2, J3) be a sequence of layers over R defined as follows (see
Fig. 18):
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Figure 17: The layers Y; for [ = 3 and w' = 3. The layers Y, and Y5 are drawn
with solid lines and the layers Y; and Y3 are drawn with the dashed lines.

o« Jo = {(rlay)r(e +1y) | 0< y < hy (24 %) mod2 =0, (0 <z <
w/2—l—1lorw/2+1<z<w-1)},

e i={(r@+Ly)r(zy+1)|0<y<h-1, (z+F)mod2=0, (0<
r<w/2-l—1lorw/2+1<z<w-1)},

o Jy ={(r(z,y),r(+Ly) |0<y <h (z+F)mod2=1, (0 <z <
w/2—1l—-1lorw/2+]l<z<w-1)},

o s={(r(z+1Ly),r(z,y+1)|0<y<h—-1, (r+F)mod2=1, (0<
r<w/2—-l—lorw/2+I<z<w-1)}.

Note that the only columns that contain the registers used by the compara-
tors from both J and Y are the columns w/2 —1 — 1 and w/2 +1.

The layers My, My, My, and M3 that are defined below are presented on
Fig. 21 for the case | = 3 and w' = 3. We define the sequence of layers of P,
as M = (Mo,M’,Ml,MI,M2,MI,M3,MI), where

o M'={(r(z,y),r(w—1—-2,y)) |0 <z <w/2} (see Fig. 19),
e for each ¢, 0 <t < 3, the layer M; contains Y; U J;, and

e for (the unique) t € {0,2}, such that J; does not contain comparators
with registers from the leftmost and the rightmost column, M; contains
the comparators {(r(w — 1,y),7(0,y +1)) |0 <y < h — 1}, and
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Figure 18: The layers J; for [ = 3 and w’ = 3. The layers Jy and J are drawn
with solid lines and the layers J; and J3 are drawn with the dashed lines.
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Figure 19: The layer M' (the left-right comparators) for [ = 3 and w’ = 3.
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e there are no other comparators in the layers of M.

We call the layers My and M, and their comparators horizontal. (Despite
that the comparators of the form (r(w — 1,y),r(0,y + 1)) are slightly slanted,
they are also called horizontal.)

My and M3 are called back-jump layers, and the comparators from these
layers are called back-jump comparators.

We call the layers M’ left-right layers and their comparators left-right com-
parators.

Observe that P, has following property:

Fact 5.13 The horizontal comparators together with the left-right comparators
between columns w/2 —1 and w/2, are all comparators of the odd-even transpo-
sition network on R.

Note that the layer My contains only comparators of the form (r(z,y), r((z+
1) mod w,y')) while the layer M; contains comparators of the form (r((z +
1) mod w,y1),7(x,y2)), where the parity of all 2’s is the same as the parity
of w/2. The layer My contains only comparators of the form (r(z,y),r((z +
1) mod w,y')) while the layer M3 contains comparators of the form (r((z +
1) mod w,y1),7(z,y=2)), where the parity of all z’s is the same as the parity of
w/2+1.

The only pairs of consecutive (modulo w) columns that are not connected
by the back-jump comparators is w/2 — 1, w/2, and w — 1, 0.

Fig. 20 presents a schematic view of the network Fj,-. The subsets of
registers used by the comparators from Y (respectively from J) are drawn as
the boxes labeled by the letter Y (respectively J). The comparators that are
neither contained in the layers of Y nor in the layers of J are drawn as the
arrows. The only left-right comparators depicted are the comparators between
the two middle columns.

Fig. 21 presents the network P, for | = 3 and w’ = 3 (without the left-right
comparators).

Fig. 22 presents P53 in a folded state (i.e. the left half of the network has
been rotated 180 degrees around the central vertical axis in such a way that the
mirror reflection of it is behind the right half of the network). The figure also
presents the comparators between the columns w — 1 and 0 (with the left-right
comparators drawn as dotted arrows).

We partition the set of registers R into the left set So = {r(z,y) | 0 <
z < w/2 — 1} and the right set S; = {r(z,y) | w/2 < z < w —1}. The
members of Sy (respectively Si) are called left (respectively right) registers.
For any register r = r(z,y), we define a shadow of r, denoted by shd(r), as
the register r(w — 1 — z,y). Note that in the folded state, the shadow of each
register r is placed in the same place as r, and that M’ contains comparators
of the form (shd(r),r). For any subset X C S we define the shadow of X as
shd(X) = {shd(r) | r € X }.
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5.2.1 Runtime analysis of P,

Recall that n = 2(I + 1 +w') - 2! is the number of registers of P .

Lemma 5.14 For k < w'/6, the network Py, sorts any k-disturbed configura-
tion in O(w' 4 1) iterations.

Let R, w, h,r, Y, J, M be defined as before. Let L = (Lo, L1, Lo, L3, L4, L5, Lg, L7)
be the sequence of layers of Py . (i.e. L1 = Ly = Ls = Ly = M and Ly; = M;.)
Let C be the set of all comparators of P .

It is enough to show that P, sorts any k-disturbed configuration consisting
of zeroes and ones in O(w' + 1) iterations. Let ¢ be an arbitrary zero-one k-
disturbed configuration of R. Let z be a number of zeroes in ¢. Then y/, = |z/w]|
is the index of the first row of registers that intersects the ones area. For ¢t > 0,
let ¢; be a configuration obtained after execution of ¢ steps of P, on c.

Let ¢’ be a configuration of R defined as follows.

0 if ¢(r) =0,
dry=< 1+|{peR|p<r, c(p)=1} ife(r)=1andr=r(z,y) fory <y,
k+1 if o(r) =1 and r =r(z,y) for y > y’.

The configuration ¢ has at most k displaced ones. Thus in ¢ the registers
above the row g/, , which contain displaced ones in ¢, contain the value from the
range {1,...,k}, every value occurring exactly once.

Let the sequences of the configurations ¢} and ¢} be defined as follows:

e ¢ =c,and

e for t > 0, ¢} is the configuration ¢} with all the values from the range
{1,...,k} below the row y/ — 1 replaced by the value k + 1.

o fort >0, ¢y = Lt moas(c}).
The next claim follows directly from the definitions introduced:
Claim 5.15 For each t > 0, the configuration ¢, has the following properties:
1. For each register r, ci(r) = 1 if and only if ci(r) > 0.
2. If a register r is above the row y., — 1, then 0 < cj(r) < k.
3. If a register r is below the row y. — 1, then ¢j(r) =0 or ¢j(r) = k + 1.
4. For each i € {1,...,k}, there is at most one register r such that c;(r) = i.

We will show that all positive values of ¢} leave the region above the row
y.—1in O(l +w') iterations. By Claim 5.15 that means that for some constant
d, the configuration cy(;4.,+) contains no ones above row y; — 1 and (since the
network is symmetrical and we have placed no restrictions on ¢) cg(;4,1) contains
no zeroes below y’. + 1. Thus Cd(i+w') 18 at most 3w-dirty and (by Fact 5.13 and
Lemma 3.4) will be sorted in the next O(w) = O(w' + 1) iterations.
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For ¢t > 0, for each pair of distinct values ¢; and g2 from the range {1,...,k}
such that ¢; < g2, we say that the value ¢; has been blocked by the value ¢, in
the register r at step ¢ if and only if there is a comparator (7,7') € L¢ mod s
and ¢;(r) = ¢ and ¢;(r') = g2. We say that the value ¢; has been pulled back
from register r’ to the register r by the value ¢o at step ¢ if and only if there is
a comparator (r,r') € L moa s and c¢j(r) = ¢z and ¢j(r') = ¢1. (So then we get
eha(r) = 1 and chy, () = g2)

Back-jump paths and stoppers. Below, we start to investigate in detail
the fine structure of P, ,s. We call the set of registers above the row y. an
active area. The registers above the row y’. are called active registers. We call
the active registers with horizontal coordinates less than w/2 the left active
registers. The remaining registers are called the right active registers. Let S’
denote the set of active registers and let Sj = So NS’ and S} =S5, N S".

We call an right active register r a back-jump starter if and only if there
is no back-jump comparator of the form (r',r). We call an active register r a
back-jump stopper if and only if there is no back-jump comparator of the form
(r,7") such that ' is in the active area. For each back-jump starter r, we define
a back-jump path of r as the longest sequence of active registers (ro,...,Ts),
such that ro = r, and for 0 < ¢ < s there is a back-jump comparator (7, r¢41).
Note that r, is a stopper, and that each right active register is on exactly one
back-jump path.

On the Fig. 21, we depict the active area for some configuration ¢. The
back-jump stoppers are marked with the boxes. Observe that the length of each
back-jump path is not greater than w/2. (Indeed, column index of a starter is
not greater than w — 1, the horizontal coordinate decreases by one as we go from
one register of the back-jump path to the next one, and all the active registers
in column w/2 are stoppers.)

We consider the positions of each positive value in the active area in the
configurations ¢;. We call the values from the range {1,...,k} active. Note
that each active value may disappear (be replaced by k + 1) if it is compared
with a zero from outside the active area.

Zones and the levels of registers. We partition the set S| into zones Z; ;
and Z; ; defined as follows (see Fig. 23 (a)):

e for 0 <z <Il-1

Zypo = {r(w/2+z,y) € S| | r(w/2+ z,y) is a stopper and y., —y > 2!71=}
e for 0 <z <Il-1

Zy o =A{r(w/2+xz,y) € S| r(w/2+ z,y) is a stopper and y, —y < 27177},
o forl<z<w/2-1

Zeo={r(w/2+z,y. — 1)},

58



w2 W2+ | Wl w2 W2+ | Wl

Zy, Zo3 Z1,4 , . 13 13
’ Zy4 Zy5 = 12y 12
z,42 z z 4 4 y,
0,0 0,1 12 14, 12 (11 i 11
Z 7 24 - A 10
11 13 , 10 10’]
, "1423|%24 9 |8
Z 7{ Y 9
21z |z .1z g’ |7” |6
22|%23|“33
Z Z ; 9 8 /7/
10711\Z, 12, 12552, 22 7776 1574
z 1]22| 32|74, . ;
00 Z \Z, . |Z,.|Z . A A4
Zy 2’0 2,1 3,1 41 Zle 7 B >6 _ _5 4 3 2
1.0
Z, |%30|Z40| %50 %60 a’3”]2 }‘ 71j“(_)>
row y, row .,
(@ (b)

Figure 23: Partition of the right active registers into the zones (a) and the levels
of the zones (b). The arrows on (b) represent the arcs of the tree of zones T'.

e forz' >0
Zyp . ={r € S]] thereis a back-jump comparator (r,r’) such that r' € Z, ,_1 },
and

Zy = {r € 81| there is a back-jump comparator (r,r') such that ' € Z, ., ; }.

It follows directly from the definition that each zone is contained in a single
column of registers. We call the stoppers from the zones Z, o upper stoppers
and the stoppers from the zones 7 o lower stoppers.

We define a zones tree T as a directed graph with the set of vertices V =
{Zea Za e # 0YU{Z, 21| Z, . # 0} and the set of arcs E = E; UE; (see arrows
on Fig. 23 (b)), where

E1 = {(Zx,x’+17Zx7x’) eV x V} U {(Z;,x’—&-lizalmx’) eV x V}

and
Ey =FE;1 UE;5 U Ey 3,
where
E271 = {(Z%(),Z;’l) eV XV | 0 S T S [ — 1},
and

Esp ={(Z30, Zat+10) €V XV [0<z <1-1},
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and
E2’3 = {(Zz,g,Zz+1,0) eV xV | [ <zx< w/2}

Arcs of E; are called back-jump arcs and arcs of Es are called horizontal arcs.
The arrows on Figure 23 (b) correspond to the arcs of the zones tree. The solid
arrows represent E;. The dashed arrows represent E>;. The dotted arrows
represent Fs » and Fjs 3.

The root of T is Z,,/2_1, (i.e. the singleton containing the last register of
the active area).

For each zone Z € V we define its level (denoted by level(Z)) as a distance
from the root in the zones tree T. For each active register » € Sy, we define
level(r) as the level of the zone containing r. For each active register r € Sp
we define: level(r) = level(shd(r)). For each active value i, let level of i in
configuration ¢} denote the level of active register that contains value ¢ or zero
if i does not exist in ¢}. The levels of the zones are displayed on Fig. 23 (b).

Claim 5.16 The mazimal vertezx level in the tree T is O(w' +1).

Proof. Consider the path from an arbitrary vertex of 7" to the root of T.
First we make some #; steps by the back-jump arcs, until we reach the first zone
consisting of the stoppers. Thus 0 < ¢; < w/2, since we can go through at most
w/2 columns leftwards. Then, while we are in the I leftmost columns of S7,
we need at most two steps to advance from the zone of upper stoppers to the
zone of lower stoppers in the same column, and then we make three steps each
time to go from the zone of lower stoppers to the zone of lower stoppers in the
next column on the right side. As soon as we enter any zone of stoppers in the
columns w/2 +1,...,w — 1, we go to the next column on the right side during
each single step. O

Let I/ denote the maximal level of a (non-empty) zone in T'. We partition the
set of levels into layers of levels. Note that for 0 < z < I, we have level(Z;_; 5) —
level(Z, o) = 3. Let b = level(Zg ;) mod 3. We define the ith layer of levels as

Li={j|3i+b<j<3(i+1)+b}.

The zones with the levels in the odd and in the even layers have been depicted
by different shades on the Fig. 23. Note that by the definition of b, the level of
each zone Z, , is a minimum of some layer of levels.

For each I > 0, we define the set of registers A; as follows:

A ={r e8] |level(r) <}

Thus A; is the union of the zones with the levels not greater than I. Note also
that AI’T = S{ and AO = Zw/2—1,0'

The following three claims follow from the definition of the network and from
the definitions of the zones and the levels of the active registers.

Claim 5.17 If (r,r') is a comparator such that r and r' are active registers,
then one of the following cases holds:
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is a left-right comparator and r' = shd(r) and hence level(r) =

is a horizontal comparator and r,r’" € Sy, and either level(r’) =
r)—1,orr € Z, o and r' € Z; o for some 0 <z <1 —2 and
level(r') = level(r) — 3, or there is a back-jump arc in T from the zone
containing v’ to the zone containing r and level(r') = level(r) + 1.

3. (ryr") is a horizontal comparator and r,r' € S|, and either level(r') =
level(r) +1, or r € shd(Z} ,, 5) and r' € shd(Z], ) for some 0 <z <1 -2
and level(r') = level(r) + 3, or there is a back-jump arc in T from the zone
containing shd(r) to the zone containing shd(r') and level(r') = level(r) —
1.

4. (r,r") is a horizontal comparator and r is in column w — 1 and ' is in
column 0, and level(r') = level(r) — 2 or level(r') = level(r).

5. (ryr") is a back-jump comparator and r,r’ € Si, andlevel(r') = level(r)—1.

6. (r,r") is a back-jump comparator and r,r' € S|, and either level(r') <
level(r) or level(r') = level(r) + 1. The second case is only possible if the
zones Zy and Zy containing respectively shd(r) and shd(r') are connected
by the arc (Zs,Z1) in T (see the following figure).

Claim 5.18 If r € S and level(r) > 0, then there is a horizontal or back-
Jump comparator (r,r') such that ' € S| and either level(r') = level(r) — 1 or
level(r') =level(r) — 3. The case level(r’) = level(r) — 3 occur only when r is in
the lower half of Z, o and r' € Z},, o, for some 0 < x <1 -2, and (r,r') is a
horizontal-comparator.

Claim 5.19 Leti € {0,4} (i.e. L; is a horizontal layer). For each comparator
(r,r') € L; N (S} x S7) such that level(r') = level(r) + 1, there is a back-jump
comparator (r',;r'") € L;yo N (S] x S1) such that level(r'") = level(r).

Releasing the layers of register levels by the displaced values. For
each t > 0, for 1 < i < k, we say that a register r is released from the value ¢ at
step ¢ if and only if for each t' > ¢, ¢j(r) #i.

To conceive the idea used in the analysis of this part of the computation
consider the following simple example: Suppose we have an odd-even transpo-
sition sorting network (see Definition 3.2) with a configuration consisting of the

61



k positive values: 1,...,k, placed in arbitrary registers and zeroes placed in
all the remaining registers. Note that at the first computation step (i.e. after
applying the first layer), the first register is released from the greatest value (i.e.
from k). After the second step the first and the second registers are released
from the value k and thus after the third step the first register is released from
k — 1. In such a way we can define for any ¢t > 0 and 7 < k the set of registers
that must be released from the value k —i at step t. Note that the border of the
area that must be released from the value k£ —i — 1 is adjacent to the border of
the area that must be released from the value k£ —i. In our network we use the
subsets A; for a construction of analogous sets.

Recall that by a step we mean an application of a single layer of the network
to the current configuration, while by an iteration we mean the application of
the entire sequence of layers of a periodic network.

Recall also that each active value may disappear, thus releasing all active
registers. For the simplicity, we skip this case in the proofs of the following
claims.

In the following we assume that w' > 6k.

The aim of the first phase of the computation is to move each positive value
i in the active region into

Ag(k—iy+6 Ushd(Agk—iy46) € Aw Ushd(Ay).

Claim 5.20 Lett > 0 and j > 0 be integers. For each active value i, if all active
registers outside Amax c; Ushd(Amin [;].) are released from the values greater than
i at step t, and i is inside Aminc,,, Ushd(Aming,,,) in configuration c;, then
all active registers outside Amax c,,, Ushd(Amin ng) are released from i at step
t.

Jj+1

Proof. We have to show that if the values greater than i remain in the area
Amax £; Ushd(Amin £;), and the value i is inside Amin z;,, Ushd(Aminz,,, ), then
i will never leave Amax c;,, Ushd(Aminz;,,)-

Assume that the values greater than i have released all active registers that
are outside Apax ; Ushd(Aminr;).

Fact 5.21 If the value i is in the shd(Amin Litt ), then as soon as it leaves
shd(Amax c;) it must enter Sy in at most one more (left-right) step and it can
enter Si only inside Aminc,,, -

The first part of the fact is implied by the fact that all active registers outside
Amax c; are released from the values greater than 7.

The second part of the fact follows from the definition of £; and of the levels
of the zones: The value i can enter S’ \ shd(Amax ;) only by being pulled back
by some greater value (with a horizontal comparator between columns w— 1 and
0) directly to Amax£; € Aminr,,, Or by going forward through the comparators
that have the first endpoint in shd(Amaxc,;) and the second endpoint in S"\
shd(Amax c;)- In the second case i either enters Amaxr; € Aminc;,, through
some left-right comparator or enters shd(Amin £;,,)\shd(Amax ;) through some
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comparator contained in S x Sj. (Note that by the Claim 5.17 (6) the back-
jump comparator can increase the level of the register containing i by at most
one, and by the definition of £;, the horizontal comparator from S} x S} can
not move i directly outside shd(Aminc,,,)-)

Fact 5.22 If the value i is in the AminLHl, then it cannot be moved outside
Amin £j+1+1 V) Shd(Amm ,Cj+1)'

The comparators that can move the value i from Aminz;,, t0 S\ Aminc;y,
must have the first endpoint in Amin £;+, and the second endpoint outside
Aminc,,, in S7. The only such comparators are the horizontal comparators with
the first register in Amin;,, and the second register in Aminz;,,+1 \ Aminc,,:-
But, by the Claim 5.19, as soon as i is moved to Aminz;, +1 \ Aminc,,,, it is
moved back to the zone with the level min £;4, by the following back-jump step,
since the zones with the level min £;; are released from the values greater than
i. If the value i leaves Sy, then it must be shifted by a horizontal comparator
from the column w — 1 to the column 0 to the shadow of the zone with not
greater level or be pulled back by a greater value somewhere inside shd (A, L,-)
through some left-right comparator. O

Claim 5.23 Let t > 0 and j > 0 be integers. For each active value i, if
all active registers outside Amax c; Ushd(Aminc;) are released from the values
greater than i at step 8t (i.e. after iteration t), and the active registers outside
Amax £;4,Ushd(Amin g, ,,) are released from i at step 8t, then after iteration t+6
(i.e. after step 8(t+6)), the active registers outside Amax c;,, Ushd(Aminc,;,,)-
are released from the value i.

Proof. Assume that after iteration ¢ we have all active registers outside
A = Anaxc; Ushd(Amin ;) released from the values greater than i and 7 has
released all active registers outside Amax ;> Ushd(Aminz;,,)

We show that within the next 6 iterations the value ¢ visits some register
from A" = (Aminc;,, Ushd(Aming,,,)). By Claim 5.20, as soon as i enters A’
it releases all active registers that are outside Apax L4 U shd(Amin Cj+1)'

If after iteration ¢, the value 4 is inside (Amaxc;4» U shd(Aming;,.)) \ 4,
then in at most the next 2 steps it must either:

e enter A, or

e be moved by the first left-right layer to Amaxc,,» \ Aminz since it can

not be blocked by any greater value outside A'.

i1

After that either:
e j starts being moved by the back-jump comparators in Si, or

e (if 7 is in the column w — 1) ¢ can be moved by the next horizontal layer
to shd(Amax £;,,) and then (if i is still outside A’) back to Amaxc; ., by
the following left-right layer, or

it+2
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e 4 can be moved by the next horizontal layer to some register in S| with the
level not greater than max £;» (since the registers with the levels greater
than max £ are released from 7).

After that (if 7 is still in Amaxz;,» \ Aming;y,) the value i is moved only
by the back-jump comparators inside S; until i enters Ay, £;4., or reaches a
stopper. (Each such back-jump step happens every four computation steps and
decreases level of i by at least 1.)

If i is still inside Amaxc; > \ Aminc,,,, then in the next iteration it starts
moving through either horizontal or back-jump comparators in S until it enters
Aminc;,,- Indeed, each time ¢ is moved in this phase, the level of i is decreased
either by 1 (if ¢ is moved by a back-jump or horizontal comparator from a zone
Zy to Zy such that (Z;,Z>) is an arc in the tree of zones T') or by 3 (if, for
some z < [ —1, i is moved from the lower half of the zone Z, ; to Z; ., o by a
horizontal comparator). Note that if Z; ., ; C A, then Z} ; C Aninr,,,, since
the levels of zones of lower stoppers are minimal within their layers of levels.
Thus, ¢ cannot be blocked by a greater active value unless it is in A'.

We have shown that latest of all at the second iteration following the iteration
t, the level of i starts being decreased by at least 1 each iteration. Since the
initial level is not greater than max Lj;» and maxLj; o — min£L;1; = 5, the
total number of the iterations needed to move i to Amin 2., is not greater than
6. O

For t > 0, for 1 < i < k we define the the tth level limit for i, denoted l;; as
follows:

i+1

lt;i = max Lonax{2(k—i), 1 —t+2(k—i)} -

Claim 5.24 Let t > 0. For each i, 1 < i < k, the active registers outside
Ay, ; Ushd(A;, ; ») are released from the value i after the iteration 6 - t.

Proof. Let 1 <i < k. Fort = 0, wehave 4;, ,Ushd(A, ;,—2) = Amaxc,, ooty Y
T
shd(Amax £l,’1.,+2(k—i)_2) = As(z’ +2(k—i))+b+2 U Shd(AB(l’T+2(k7i))+b) =SjUSy =

T
S’. Thus we have proven the case ¢t = 0 for all the values 7, 1 <i < k.

For the case i = k, consider the behavior of the value k in the active area.
After the first iteration k& must be placed in S; outside the column w —1 (if it is
above the row y/, — 1) and it remains there, since there is no greater value in the
active area that could pull it back to Sy. Then at the next back-jump step with
the comparators that have the first registers in the zone containing k, the value
k starts to travel through the zones of S; to the root of T'. During each step of
the travel, the value k either is moved to the zone connected with its current
zone by an arc or if it is in the lower half of some zone Z} ,, for 0 <z <1 -2,
to the zone Z, ;. At least one step of the travel is performed during each
iteration.

Thus after the first iteration all the active registers that are outside Ager,l =
Ay are released from the value k. After the tth iteration (and hence after the

iteration 6¢) all the active registers that are outside Amax{0’3l/T _ty are released
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from the value k. Since

Amax{O,Sl’Tft} c Alt,k U Shd(Alt,k—Q)

the case ¢ = k has been proven.

Let 1 < i < k and ¢ > 1. By the induction hypothesis, all active reg-
isters outside A;,_,, U shd(4;,_, ,_2) are released from i after 6(t — 1) iter-
ations and all the active registers outside A;,_, ,,, Ushd(A4;,_,,,,—2) are re-
leased from the values greater than i after 6(¢ — 1) iterations. We have l;_; ; =
max Loax{2(k—i) 1y —t+1+2(k—i)} a0d le—1 41 = Max Lopaxfa(k—i—1),1 —t+1+2(k—i—1)}-
Let j = max{2(k—i—1),l},—t+1+2(k—i—1)}. Thus all active registers outside
Amax £; Ushd(Amin ;) are released from the values greater than i at step ¢, and

active registers outside Apax £

42 Ushd(Aming,,,) are released from i at step t,

and by the Claim 5.23, the active registers outside Amaxc;,, Ushd(Aminc;,,)
are released from the value ¢ within the next 6 iterations. O

Corollary 5.25 For each i, 1 < i < k, the active registers that are outside
Amax Loge_sy Ushd(Amin Lz(k—i)) are released from the value i after 61l iterations.

Note that max Lyp—jy = 6(k — i) + b+ 2. Thus after 6[7 iterations of
computation all positive values will remain in the zones with levels not greater
than 6k — 4 + b and their shadows. Since b < 2 and w' > 6k, all those zones
are the singletons in A, Ushd(A,-) in the rightmost w' columns (in the folded
version of P, ,+). The connections between the registers in this part of the
network have a very regular structure. We use this regularity to show that all
positive values will flow into the row y., — 1 in the next O(w') iterations.

The following claim is a collection of some properties of (A, U shd(A,))-
restriction of the network, useful in the analysis of the next two phases of the
network computation.

Claim 5.26 1. shd(A,r) is contained in the columns 0,...,w" — 1,

2.
3.

Ay is contained in the columns w —w',...,w —1,

A, Ushd(Ay) is contained in the rows y.—1, ...,y —1—max{y | w' > 2y}

. For 0 <i <max{y |w' > 2y}, for 0 < j <w —2i, level(r(w—1-j,y. —

1—i)) = level(r(j,y. — 1 —i)) = j + 2i.

For each r(x,y) € shd(Ay), there is a left-right comparator (r(z,y),shd(r(z,y)))
and level(shd(r(z,v))) = level(r(z,y))-

x,y) € Ay such thaty < y.—1, there is a back-jump compara-
,r(z — 1,y + 1)) and level(r(x — 1,y + 1)) = level(r(z,y)) — 1.

For each r
tor (r(z,y

~— o~

For each r
tor (r(z,y

~—~~

x,y) € Ay such that © < w—1, there is a horizontal compara-
,r(z 4+ 1,y)) and level(r(z + 1,y)) = level(r(z,y)) — 1.

~

For each comparator (r,r') € Ay x Ay, level(r') = level(r) + 1.
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9. There is a comparator (r(w —1,y, —2),7(0,y.—1)). (The entrance to the
shadow of last row of Ay.)

10. For each 0 < i < k, there is a comparator (r(i,y. —1),r(i + 1,y. — 1)).
(The existence of the Hamiltonian path of comparators in the shadow of
the last row of Ay.)

Proof. The properties listed follow directly from the definition of the levels
of registers. O

We start the second phase of computation with a configuration where each
positive value i, 1 < i < k is inside Ag(—;)4p42 Or its shadow, or does not exist,
and our aim is to obtain a configuration such that each i, 1 < i < k is inside
Aj_;. The second phase is very similar to the first phase, but the part of a
network occupied by the active values in the second phase has a very simple
structure.

Claim 5.27 Assume that we start some iteration of the second phase with a
configuration such that for some j, 0 < j < w', for each i, 1 < i < k, the
active registers outside A axir—ij—2i} UShd(Amaxir—i,j—2:}) are released from
the value i. Then after the next iteration for each i, 1 < i < k, the active
registers outside Amax{r—i,j—1—2i} UShd(Amax{k—i,j—1-2i}) are released from i.

Proof. For the value k the claim is obvious, since k is never blocked
in the active region. Consider any ¢ < k. The registers that are outside
Amax{k—i—1,j—2i—2} U shd(Amax{k—i—1,j—2i—2}) are released from all the values
greater than i, and i must be inside Amax{r—i,j—2i} U Shd(Amax{r—ij—2i). i
is outside Apaxfr—i,j—2i—2} U Shd(Amax{k—s j—2i—2}), then (after last left-right
step of the previous iteration) ¢ must be placed in some register with the level
max{k—1i,j—2i} or max{k—i,j—2i—1}in S| and by the Claim 5.26 (points 6
and 7) there is a comparator that moves it to the register in the Apaxfr—sj—2i—1}
unless 7 is already there. O

Corollary 5.28 After O(w') iterations of the second phase, each active value
i has released active registers that are outside Ap_; Ushd(Ag_;).

Proof. The corollary follows from Claim 5.27. O

Note that after the last left-right step of the last iteration the value k (if still
exists) must be in the only register of Ay. The value & — 1 can be in one of the
four registers of A; Ushd(A4;). We add one more iteration to the second phase
to ensure that & — 1 is moved to A;. (We will use this in the proof of Claim
5.32.)

Final smoothing of displaced elements. The third phase we start in a
configuration, where each positive active value ¢ is inside Ap_; Ushd(Ay_;) or
does not exist. (Moreover, k and k£ — 1 are in Ag and A; respectively.)

We modify slightly the definition of the configurations ¢} in the third phase
of the computation: If ¢ is the number of the computation step in the third phase
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of the computation, then ¢} is obtained from the configuration ¢}’ by replacing
all positive values below the active area and in the last row of Ay with the value
E+1.

Our aim is to obtain all active values inside the row y, — 1. Let B denote
the last row of A;, and let B’ = shd(B) (i.e. B and B’ are contained in the
row y. — 1). All active values are inside A = Aj U shd(Ag). The third phase
will move all active values to the lowest row of A. There are many ways the
active values can enter the last row of A, however we concentrate only on the
horizontal comparator (r(y. —2,w —1),r(y. —1,0)) (mentioned as the entrance
to the shadow of the last row in point 9 of Claim 5.26). To each register r in
A we assign a label ¢(r) that may increase during the computation. The label
q(r) is either integer value or an integer value plus 0.5, and k — ¢(r) is an upper
bound on the positive value that can still appear in r. Since all positive values
that enter B are immediately replaced by k+ 1, the registers of B can have label
—1. The values k£ and k& — 1 are in B already before the third phase. Thus all
the registers in B’ are released from k and k — 1 and can be initially labeled by
1.5. The registers in A\ (B U B’) have the initial labels equal to their levels. If
for some r € A there is a back-jump or horizontal comparator inside Ay, or the
entrance to B’', of the form (r,7') or (shd(r),r') such that ¢(r) — q(r') = 0.5,
then either:

e the value k—q(r) is an integer and the register 7’ is released from k—q(r)+1
(thus the value k — ¢(r) can move from r to r' in at most single iteration
and we can then increase ¢(r) by 0.5.), or

e the value k — ¢(r) is not an integer and we can increase ¢(r) to the next
greater integer (by adding the value 0.5) without destroying the upper
bound on the positive values that can be in r.

In a similar way we can increase the labels of registers in B’ with the use of
horizontal comparators contained in B’.

Here is a more formal definition of the labels. We assign the labels g;(r) to
the registers r of Ay Ushd(Ay) as follows:

e For r € B, for all t > 0:
qi(r) = —1.

e Forr € B':
qo(r) = 1.5.

e Forr ¢ BUB"
qo(r) = level(r).

e Fort > 0:
a(r(w—1,y. —2)) =q_1(r(w—1,y. —2)) + 0.5
and

q:(r(0,y. — 2)) = -1 (r(0,y. — 2)) + 0.5
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Figure 24: The labeling of the registers of (A \ B) U B’ of the folded P,

where k = 4, for the subsequent values of .

and
a(r(0,y. — 1)) = ¢;—1(r(0,y. — 1)) + 0.5.

e Fort >0, for r(z,y) € B, z > 0:
@ (r(z,y. — 1)) = @1 (r(z — 1,y — 1)).

e Fort>0,and r € 4;, \ B:

if there is a horizontal or back-jump comparator (r, ') such that v’ € A\ B

and q;—1(r') = g—1(r) — 0.5, then

qt(r) = q—1(r) + 0.5

and
qe(shd(r)) = g;—1(shd(r)) + 0.5
else
@ (r) = qi—1(r)
and

gt (shd(r)) = q;—1(shd(r))
For t > 0, we define the set ();; as follows:

Qi = {r € Ay Ushd(A4x) | ¢:(r) < i}

Claim 5.29 For eacht > 0, for eachi > 2, if Q¢+1,;\(BUB') # Q:,;\(BUB'),
then either there exists a register r € Ay above the row y. — 1 such that q.(r) =

i — 0.5 or the only registers with the label q; equal to i are r(w — 1,y —2) and

shd(r(w — 1,y. — 2)).
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Proof. The claim follows from the definition of the labels. O

Claim 5.30 For each t > 0, if for some integer i there is a register above the
row y., — 1 with the label g, equal to i 4+ 0.5, then each register above the row
yl. — 1 with the label q; equal to i + 1 is either the first register or the shadow of
the first register of the horizontal or back-jump comparator contained in S| X S}
with the second register having the label q; equal to ¢ + 0.5.

Proof. The claim follows from the regular structure of the comparator
connections in Ay and from the definition of the labels g;. All the registers with
the same level in Ay above the row y. — 1 must have the same label ¢; and the
registers with the greater levels must have greater values of the labels. Thus if
the registers above the row y. — 1 with the level j < k have the label ¢; equal
to i+ 0.5, then the registers above the row y. — 1 with the level j + 1 must have
the label ¢; equal to 7 + 1 and there are no other registers above the row y’ — 1
with the same label. O

Claim 5.31 The set Qa1 is contained in the row y.. — 1.

Proof. Consider the area above the row y, — 1. We may treat the fraction
“0.5” as the signal that is emitted every step from the pair of registers r(w —
1,y. — 2), shd(r(w — 1,y. — 2)), and is broadcast to other registers in Aj above
the row y’ — 1 and their shadows by the horizontal and back-jump comparators
contained in S]. (The comparator (r,r') broadcasts the signal from 7’ to 7. The
arrows on the Fig. 24 denote the comparators used for broadcasting.) Once
the register receives the “0.5” signal, it starts the process of increasing its label
by 0.5 every step. Once the “0.5” signal reaches the registers with level & (i.e.
after k — 1 steps), the area of registers with the labels not greater than k starts
shrinking. During each step all the labels k are replaced by the labels k& + 0.5
and the labels k are placed on the registers that had the labels k£ — 0.5 and are
“one comparator closer” to r(w — 1,y. — 2) or shd(r(w — 1,y. — 2)). O

Claim 5.32 After t iterations of the third phase, each active value i, has re-
leased all active registers outside Q¢ ;-

Proof.

The values k and k—1 are in the registers r(w—1,y.—1) and r(w—2,y, — 1)
after the second phase. (Recall that we have added one more iteration to the
second phase, to ensure that k£ — 1 is also in A;.)

For t = 0, for 2 < i < k, each register with the level 7 has the label ¢
not greater than ¢, thus after the second phase the value & — ¢ must be in
Qoﬂ' 2 Az U Shd(Al)

Consider the value k — 2. After the last left-right step of the second phase it
must be either in 7(w — 3,y, — 1) or in shd({r(w — 1,y, — 1),r(w —2,y. — 1)})
(or in {r(w —1,y. —1),7(w — 2,y. — 1)} if some of the greater values do not
exist) or in the register r(w — 1,y. — 2). In the last case, the first horizontal
step containing the comparator (r(w — 1,y. — 2),r(0,y. — 1)) moves k — 2 to
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the shadow of the last row of A (i.e to B’). As soon as k — 2 is in B’, it is
moved unblocked by the subsequent horizontal steps until it is in the shadow of
some register of B with the value 0, and then by the left-right step is moved to
B and replaced by k + 1. (Note that the length of B and B’ is k and there are
at most k positive values in B U B’ and hence k& — 2 must meet some zero in B
while it is in B’.) Anyway k — 2 will never be pulled back out of Q- after the
tth iteration.

Let ¢t > 0. (If t = 0, then the iteration ¢ is the last iteration of the second
phase.) Consider the placement of arbitrary positive value 7, 1 <7 < k — 3 after
the iteration t.

If 7 is inside Q¢ r—; \ (BU B" U Qpy1,6—i), then i is (after the last left-right
step of the iteration t) in S{ in some register r above the row y’ — 1 such that
qt(r) = k—1. There are no comparators (r,r’) € S xS} such that g:(r) < ¢:(r').
If r # r(w — 1,y. — 2), then by the Claims 5.29 and 5.30 there is a back-jump
or horizontal comparator (r,r') such that g;(r') = q;(r) — 0.5, thus the value
k — ¢ must be moved in the iteration ¢ 4+ 1 to some register with the label ¢; not
greater than k —i —0.5. If r = r(w — 1,y.. — 2), then the horizontal comparator
(r(w —1,y. —2),7(0,y. — 1)) moves k — i in the iteration ¢ + 1 to B'.

If ¢ is inside Qyr—; N B’ \ Q¢41,k—i, then in the iteration ¢ + 1 either ¢ will
be moved to the next register of B’ or it will be moved to B and replaced by
k+1.

The following fact ensures that the value ¢ will not leave Q¢41,5—; during the
iteration ¢ + 1 and later.

Fact 5.33 For each comparator (r,r') such that q;(r) < q:(r'), we have r €
shd(Ag \ B) and r' € shd(Ay \ B), and (r,r') is a horizontal comparator and

q+1(r') = qu(r) + 1.

The fact that » € shd(A4; \ B) and r' € shd(A; \ B) and that (r,r') is a
horizontal comparator follows from the definition of ¢; and from the structure of
Ap-restriction of the network: If g;(r) < ¢;(r') then (r,r") must be above BUB’,
since for each t the labels in B’ U B are less than any labels in A U shd(Ag) \
(B'"UB). On the other hand if r, 7' € A}, Ushd(Ag)\ (B'UB) and ¢:(r) < q:(r")
then level(r) < level(r’). The only comparators (r,r') inside Ay Ushd(Ag) such
that level(r) < level(r') are the horizontal comparators inside shd(Ay).

Let us show that gi41(r'") = ¢:(r) + 1. We have either ¢.(r') — ¢:(r) =1 or
qi(r") — q¢(r) = 0.5. In the first case, g1 (r') — q:(r) = q:(r") — q:(r) = 1. (Note
that in this case the second endpoint of the back-jump comparator starting in
shd(r') has also the label ¢; less than ¢ (r') — 0.5 and the label of r' remains
unchanged.) In the second case, gi11(r') — ¢:(r) = (g (r') + 0.5) — ¢ (r) = 1.

If during the iteration ¢ + 1 the value i enters Qy1,x—i \ Qt,k—i—1, then after
the subsequent left-right step it must be placed in Q¢41,5—; N S]. Thus i can
never leave (Q¢11,—; once it have entered it, since there are no comparators in
S| that can move 7 to the register with the greater level. By the Fact 5.33, the
value k—¢ cannot go directly in single step from Q¢ —;—1 to any register outside

Qt+1,5—i- O
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Corollary 5.34 After 2k iterations of the third phase all the positive values in
the active area are in the row y.. — 1.

Proof. The corollary follows from the Claims 5.31 and 5.32. O

We have shown that for w’ < 6k the network P, moves in at most O(l +
w' + k) iterations all the displaced ones of the k-disturbed input to the rows
y.—1 and y, and (by the symmetry of P, ,,) all the displayed zeroes to the rows
y. and y’ 4+ 1. Such a configuration is at most 3w-dirty and can be sorted (by
Lemma 3.4) in the O(w) iterations of the last fourth phase.

For arbitrary n and k such that k < n/6, we can use the {0, ...,n}-restriction
of the network P, g, where I = min{m | 2™(m + 1 + 6k) > n} for sorting the
k-disturbed sequence of length n in O(l + k) iterations. Note that [ is O(logn),
so the construction fulfills the properties stated.
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A The proof of Lemma 3.21

This appendix contains the proof of Lemma 3.21 invented by Grzegorz Sta-
chowiak.

Proof. Let z = (m)*(0)'=*, where 1 < k <1 —1. (The cases k = 0 and
k = [ are trivial.) For t > 0 let z; = V! (x). For t > 0 let by € {0,1} be
defined as follows: b, = V{ ,((1)*(0)'~*). Note that for even ¢, b; is the output of
the t-th iteration of the [-odd-even transposition network applied to the vector
(1)¥(0)! %, and by is the result of the application of the first layer of the I-
odd-even transposition network to the vector b;. By Lemma 3.3, for ¢t > [, the
sequences b; are sorted.

Claim A.1 1. Ift > 1, then b, = (0)' *(1)*.

2. If0 < t < I, then by = (0)ma{0I=k=(=1)}q(1ymax{0k—(=N} yhere d is
some zero-one subsequence.

The first part of the claim follows from the fact that b; are sorted for ¢t > .
The second part follows from the fact that b; is sorted and that in a single
layer of the odd-even transposition network the number of register containing
the leftmost one can be increased by at most one and the number of register
containing the rightmost zero can be decreased by at most one. O

For some s > 0, let vy,...,7s > 0 be a sequence of coefficients such that
>i_1 7 = 1. Then the vector vivy + ...+ Ysvs is a convex combination of the
vectors vy, ..., Us.

Claim A.2 Let s > 0, let v1,...,7s > 0, such that Y ;_,vi = 1, and let
vi,...,vs € [0,m]'. Then

Z ')/i-/\/‘s,m(vi) j Ns,m(z 72'07,)
=1 i=1

and

S 8
Z’}/ifps,m(vi) j Ps,m(z 72'07,)
=1 =1
Proof. For even j or j = [, we have
hdj (NVem (Y vivi)) = hd; (O yivi) = hdj (Y iNe.m (vi).
i=1 i=1 i=1
For odd j < I,

hdj (Neom (Y %)) = hdj 1 Vem O~ 7ivi) + fem O vivig +vij41))
i=1

i=1 i=1
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and

hd; (> Ve (vi)) = hdj1 O YiNem (Vi) + D Vifem (vij + vij41)
i=1

i=1 i=1

where v; = (v;1,...,v;1). By the fact that f. ,, is a convex function and that
hdjfl(/\/‘s,m(zl‘?zl ’}/Z’UZ)) = hdjfl(Z::l 'yi./\/'s,m(vi)) we have

hdj(/vs,m(z yiv;)) < hdj(z VilNe,m (v7)).

(The proof for Py, is analogous). O
Let t' be the minimal ¢ such that b; is sorted. We assume that 0 < k < [,
and hence ¢ > 0. For 0 <t < ' let e; = mb;. For t > ' let e; = €y _(4—4') mod 2-

Claim A.3 Ift > 0 is even, then

Nem(er) = Nem(err1) = cer + (1 —€)eryr.
Ift > 1 is odd, then

Pemler) = Pemlery1) =cep + (1 —€)egqr.
Moreover eg <X Pz m(eo)-

Proof. For each ¢t > 0let e, = (e41,...,€11). Let t +1 be odd. To see that
Nz m(er) = Nz (err1) note that for odd i < I, er; + erit1 = €r41,i + €14+1,i+1-
For each odd i < I, ®; = et + €riy1 = €t41,i + €t41,i41 € {0,m,2m}. Let
v=(v1,...,0) = Ncm(er). Then v; = f. y(z;) and viy1 = gem(z;). f2; =0
or x; = 2m, then

v = :UZ/Q = €€t,; + (1 — 8)6t+17i
and

Vi+1 = iEl/Q = E€t,i+1 + (1 — 8)6t+17i+1.

If ©; = m, then e,; = m and e; ;41 = 0 (also for ¢ > ¢') and e;41,; = 0 and
€t+1,i+1 = M, hence

vi = ex; = egepi+ (1 —€)ertn
and

Vi+1 = (1 — E)iL”i = €€t,i+1 + (1 — 8)6t+17i+1.

If [ is odd, then

w=e=et1;=¢ce+(l—¢e)epr1y.

Thus for all i, 1 < <1, we have v; = eey; + (1 — €)er1,;. (The proof for P.
is analogous.)

The eg < Pem(eo) follows from the fact that eg is the least vector from
[0,m]" in the relation < with the sum of coordinates equal km. O
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Corollary A.4 Let s > 0. Let vi,...,7vs > 0, such that >}_,v; = 1. Let
Ys41 =0. Let Y7o vie; <v. Then

Ls/2]

Z (e(y2i + v2ir1)e2i + (1 — €)(v2i + 72i41)€2i41) S Nem(v) (6)
i=0

and

[s/2]
Yo€o + Z (e(y2i=1 + Y2i)e2i + (1 — €)(y2i—1 + 12i)€2i41) X Pem(v).  (7)
i=1

Proof. Equation 6 follows from the fact that by the Claims A.3, A.2 and
by Lemma 3.17

Ls/2] s
Z (e(r2i + Y2i41)e2i + (1 — ) (720 + Y2it1)e2i41) = Z%'Na,m(ei)
i=0 =0

j Ns,m(z 7@62) j Ns,m(v)‘
i=0
Analogously we can prove the equation 7. O
Definition A.5 Fort >0 and i > 0 we define the coefficients a:; as follows:
e ago=1and fori>1, ap; =0.

e iftis odd, t > 1, then

o= e(ae—1,i + 0—1,i41) if i is even, i > 0
b (I—e)(at—1i-1 + 1) ifiisodd, i>1

e ift is even, t > 2, then

at—1,0 Zf’L =0
api =< elar—1,i+o—1,41) if i is odd, i > 1
(I—e)(ap—1i-1 +s—1,:) ifi is even, i > 2

Note that, for each ¢ > 0, Y ay; = 1 and hence ¢; = Za”>0 Qg je; is a
convex combination of eg,...,e;. By the Corollary A.4 it is easy to show by
induction that:

Claim A.6 For each t > 0,
Ct j Tt.

Definition A.7 Fort > 1,4 >0, let f; (the flow from i to i+ 1 in step t) be
defined as follows:

fi= a1 — oy if (tmod 2) # (i mod 2)
7Y 0 otherwise
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Claim A.8 Lett>1. Foralli >0, f:; >0 and
o Ifl<i<l—1, then fiy1, =1 —¢)ftic1 +eftiv1
L4 ft+1,1 = €ft,2

Proof. The first equality can be shown as follows. If f;11; = 0, then
fti—1 =0 and fi ;41 = 0 and the equation follows. If fii1,; # 0, then fiyq1,; =
Qi — 1, = 041, + fric1 — el@—1,i + fric1 + —101 — frip1) = (1 —
e)ar—1; —ey_1,i41 + (1 — &) frim1 + €ftix1. By the Definition A.5 we have
(1 —¢e)at—1,; = eas—1,i+1 and hence fii1,; = (1 —¢€) ft.i—1 +&ftir1. The second
equality can be shown in a similar way. O

Definition A.9 Fort > 1, for any integer i, let u;; (upper bound on f; ;) be
defined as follows:

o uo=1, and for i #0, u1; =0, and

o fort>1,u; = (1 —e)up—1—1 + EUs—1,i+1

It is easy to verify the following claim.
Claim A.10 Fort > 1,4 >0, fi; <wyand fort > 1, —t+1<i<t—-1,
such that (t mod 2) # (i mod 2),

t—1 . .
= (t—1—1)/2 1— (t—141)/2
Ut <(t 1+ z’)/2>‘E (1-¢) '

O
Ift>1,and —t+1<i,and i+ 2 <t —1, then

)

t—1 )
Uti ((t—1+i)/2) € :t+(z+1)_ €

. t—1 _ — (s —_
Ut,i+2 ((t—1+i)/2+1) 1 g t (Z + ].) 1 g

For d > 1if t > dl and i <, then

Ut g <dl+l e _d+1 €
Uty — dl—1 1l—¢ d—-1 1—¢

Ifd>1/(1—-2) > 1, then ¢ = & . = < 1. Thus f;; < ug; < 7972,

(Indeed, f,; is either 0 or it is not greater than w;; < cuy ;42 and u;; < 1 and
ut 41 < 1.) On the other hand, if f;; > 0, then

fri=ou—1;— o =1, — (1, + a—1,i+1)

> (1—e)ap—1;=(1—¢e)*(ar—2i—1 + t—2,).

Hence ay 2; 1 + ap 2, < (1,15)2 cl=0/2 Thus, for even ¢t > dl + 2 we can

estimate the sum of the coefficients a;_» ; with i <[ — r as follows:

I—r

1 1—i
E o o = E (ar—2,i—1 +ar—2,4) < TE5E E \/E( )
=0

0<i<l—r, f:,;>0 0<i<I—r, ft,i>0
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1 (1-3) 1 Ve
SR Y (e AR

We want to find 7 such, that 3" oy _»; < L. Let

ml”

2 1
"> Tog(ije) (log(m” +log ((1 s T \/E)>> '
Then (1/y/c)" > % and hence

1 Vi1
(1-¢)2 1—yc ml

If
1
mil >

T (1=e2d-e)
then we can have any r such that
s> — 2 log(mi)
"7 log(1/e) B
Note that for d = 4/(1 — 2¢),

C_5—25 €
T 342 1-—¢

and, for 0 < e < %,

and hence

Recall that

Ct—2 = E at_2 €4,

at—2,i>0

Let ¢t—2 ; be the j-th coordinate of ¢;—s, where j <1 —k —r. By Claim A.1, ¢;
has only zeroes as the j-th coordinate if ¢ > [ — 7. Thus

l—r

Ct—2,5 < mZat_u < 1/l
=0

Hence hd;_,(¢;—2) < (I —r)/l < 1. Recall that ¢;_» < xt_5. Thus we have
hdl,r(xtfg) < 1.

Lemma 3.21 follows if we take a =d > 4/(1 — 2¢) and 8 > m.
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