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1 Introdution

Sorting is one of the fundamental problems in data proessing. Many operations

an be performed muh more eÆiently on sorted data. There are many sorting

algorithms. Majority of them are programs for RAM mahine (i.e. for a las-

sial model of omputer). Many of the sorting algorithms have been invented

for parallel (multiproessor) omputers with spei� models of inter-proessor

onnetions. One of the other approahes is to invent a speialized hardware

for sorting and related problems. A very popular approah in this area are

omparator networks.

1.1 Comparator networks

A omparator is a simple devie with two inputs and two outputs. For two num-

bers x and y arriving on the �rst and the seond input, in a single omputation

step the omparator outputs the value minfx; yg on the �rst output and the

value maxfx; yg on the seond output (see Fig. 1). Thus a omparator sorts a

sequene of length two. We may pipeline two omparators so that an output

of the �rst omparator will be used as an input of the seond one. The seond

omparator an perform its omputation, one the �rst omparator is �nished.

A set of omparators with onnetions desribed is alled a omparator net-

work. There is a restrition that no loop-baks are allowed (i.e. no omparator

network may ontain a sequene of omparators 

0

; : : : ; 

k

, suh that for all i,

an output of 

i mod (k+1)

is onneted to an input of 

(i+1) mod (k+1)

). The input

of the network is plaed on the unonneted inputs of the omparators (alled

inputs of the network) and the output is taken from the unonneted outputs

(alled outputs of the network). The input size of a network is the number of

its inputs. Sine eah omparator has two inputs and two outputs, the number

of inputs of any network is equal to the number of its outputs.

If the input size of the network N is n, then we label the omparator inputs

with n distint integers R

1

; : : : ; R

n

as follows:

� Eah input of the network is labeled by one of the numbers R

1

; : : : ; R

n

,

eah number used for only one input.

� For eah omparator  that has the �rst input labeled R

i

and the seond

input labeled R

j

, for some i 6= j, the �rst output of  is also labeled by

R

i

and the seond one by R

j

(as on Fig. 1).

� If an input of a omparator is onneted to an output labeled R

i

, then it

is also labeled R

i

.

For any network N with the input labeled by R

1

; : : : ; R

n

, for any ordered set

X , the input on�guration over X is a funtion  : fR

1

; : : : ; R

n

g ! X suh that

the value (R

i

) is plaed on the network input labeled R

i

. Let 

0

(R

i

) denote

the value omputed by N on the output labeled R

i

for suh an input. Then

the funtion 

0

: fR

1

; : : : ; R

n

g ! X is the output on�guration for the input

on�guration .

1
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Figure 1: A omparator with the inputs and outputs labeled by R

i

and R

j

.

We an de�ne a level of the omparator  in the network N as follows:

� the level of all omparators with both inputs unonneted is one,

� the level of any omparator with at least one onneted input is l + 1,

where l is the maximal level of the omparators onneted to its inputs.

We an divide a omputation of a omparator network into steps, where during

a single step all omparators that have already values on both their inputs

ompute their outputs. Thus the maximal level is the minimal number of steps

needed by the network to ompute all its outputs.

For any omparator network N , we an partition its omparators into om-

parator subsets alled layers. The sequene of layers (L

1

; : : : ; L

d

) must satisfy

the following onditions:

� If  2 L

i

and some input of  is onneted to the output of some ompara-

tor 

0

2 L

k

, then k < i.

� For eah i, if 

1

2 L

i

and 

2

2 L

i

and the labels of inputs of 

1

(respe-

tively of 

2

) are R

i

1

and R

j

1

(respetively R

i

2

and R

j

2

) then fR

i

1

; R

j

1

g \

fR

i

2

; R

j

2

g = ;.

For a network N with de�ned sequene of layers L = (L

1

; : : : ; L

d

) we assume

that at step t all omparators from L

t

perform its omputation. (Even if a

omparator of L

t

has its inputs already before step t, it waits until step t with

its work.) The length of L (i.e. d) is the depth of N . Note that the layer L

t

an

ontain only omparators with the level not greater than t.

An equivalent model of the omparator network omputation is the following

one: The data are stored in the registers labeled by R

1

; : : : ; R

n

, one label per

register. During step t, 1 � t � d, eah omparator  from layer L

t

takes the

values from the registers R

i

and R

j

(where R

i

and R

j

are the labels of the

�rst and the seond input of  respetively) and stores the minimum of the two

values in the register R

i

and the maximum in the register R

j

.

Fig. 2 illustrates three styles used for a graphial presentation of a ompara-

tor network. The example network ontains only four omparators A,B,C and D

with the inputs and outputs labeled by the numbers 1; 2; 3; 4. In the traditional

desription eah omparator is presented as a box with two input lines on its

left side and two output lines on its right side. The �rst input (respetively out-

put) is above the seond one. In the \wire-style" eah omparator is drawn as

2
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Figure 2: A omparator network presented in di�erent ways

a vertial arrow onneting two wires (eah wire orresponds to a single label).

The arrow is direted to the wire orresponding to the label of the seond (i.e.

maximum) output of the omparator. We an draw the vertial lines instead

of the arrows if all arrows are direted downwards. In the \layer-style" eah

layer is drawn as a direted graph of degree 1, where the verties orrespond

to the labels and the ars orrespond to the omparators (i.e. if the �rst and

the seond output of a omparator  is labeled R

i

and R

j

respetively, then 

is depited by an ar (R

i

; R

j

).)

Comparator networks an be easily implemented as speialized hardware

devies. This is the main motivation to study these networks. The main pa-

rameters of a omparator network are the number of omparators and its depth

(the number of layers). The number of omparators orresponds to the amount

of hardware needed for the implementation of the network, while its depth

orresponds to its omputation time. We an also onsider other properties of

omparator networks suh as the omplexity of the network arhiteture and the

layout area needed for the implementation of the network in the VLSI tehnol-

ogy. The last two issues are extremely important for VLSI design and suitability

for pratial appliations. One nontrivial issue is to judge what \simple arhi-

teture" is. There is no easy way to express it in a mathematial model so that

all tehnologial limitations are well modeled. For this reason we mainly dis-

uss suh parameters as depth and size of omparator networks, while quality

of arhiteture is often expressed in an intuitive way.

Comparator networks has been the subjet of intensive investigations in

omputer siene. Their main appliation is sorting input sequenes. But there

are also many other tasks that an be performed by the omparator networks.

For example we an use them for

3



� merging sorted subsequenes into a single sorted sequene,

� sorting sequenes that di�er from a sorted sequene only on a limited

number of positions,

� inserting a value into a sorted sequene, so that the output is sorted,

� seleting the minimal or the maximal value (or the t smallest or the t

greatest values) of the input.

The �rst three appliations an be onsidered as sorting of the onstrained

input sequenes, sine the output must be sorted. All these appliations gain

a growing interest due to the needs in teleommuniation tehnology. EÆient

methods of paket reordering may provide new designs of intelligent routers

and similar devies. Sine ommuniation bottlenek is one of most severe

problems in omputer tehnology and pratie today, these methods deserve a

lot of attention.

There is a lower bound of 
(log n) on the depth of the omparator networks

for all of the above listed problems, where n is the size of the input. On the

other hand, there is a sorting network of depth O(log n), known as the AKS

network [1℄. Sine these problems are less general than the problem of sorting,

the upper bound on the depth is also O(log n). The best urrently known

sorting networks of depth O(log n) (whih are variants of the AKS network)

have the depth not less than  logn, where  is a onstant not less than 1000.

Additionally, their arhiteture is very omplex and is based on the struture

of (usually random) expander graphs or other random strutures. Thus, for

pratial appliations we have to �nd other networks. The most elegant and

the most eÆient pratial designs are the two Bather networks [3℄. They have

the depth very lose to

1

2

log

2

n and are based respetively on the odd-even

and bitoni merging networks. Note that the Bather networks beat the AKS

network for the inputs of size n � 2

1000

. Sine 2

1000

is muh bigger than the

estimated number of the partiles in the universe, for any potential appliation

the AKS network is inferior to the Bather networks.

1.2 Periodi networks

We an also onsider so alled periodi networks. Periodi networks perform

their omputation in many iterations. During eah iteration a sequene stored in

the registers is taken as an input on�guration of the network and is replaed by

the output on�guration omputed by the network for this input. Thus although

the omputation time is t = dk, where k is the number of iterations and d is

the depth of the network, the number of omparators is at most dn=2, where n

is the input size (sine eah layer an ontain at most bn=2 omparators). The

examples of the periodi networks are

� the DPSR network by M. Dowd, Y. Perl, M. Saks, and L. Rudolph [5℄, of

depth logn that sorts in logn iterations,

4



� the network by M. Kuty lowski, K. Lory�s, B. Oesterdiekho�, and R. Wanka

[10℄ of a onstant depth that sorts in O(log

2

n) iterations (obtained by so

alled periodi�ation of the AKS network),

� the odd-even transposition network of depth 2 that sorts in n=2 iterations,

� the network by I. D. Sherson, S. Sen, and A. Shamir [14℄ of depth 2

p

n

that sorts in logn iterations,

� the Shwiegelshohn network [16℄ of depth 8 that sorts in O(

p

n logn) it-

erations.

The last three networks are very suitable for the VLSI tehnology, sine the

area of the layout of their underlying arhiteture is proportional to the size of

the input. There are also known periodi merging networks of a onstant depth

by M. Kuty lowski, K. Lory�s, B. Oesterdiekho� [9℄ that merge two sequenes in

O(log n) iterations.

1.3 Outline of the thesis

In this thesis the following results are presented:

� In Setion 3, for an arbitrary onstant k we present a periodi network

of a onstant depth that sorts in O(n

1=k

) iterations. The onstrution of

this network is based on the (";m)-bloks whih are a generalization of

the odd-even transposition network, where single registers are replaed by

the groups of m registers, and omparators are replaed by the so alled

"-halvers (used originally in the onstrution of the AKS network). This

network (presented in [8℄) was asymptotially the best onstant depth

network until the invention of the networks from [10℄.

� In Setion 4, we present a omparator network that sorts any sequene

that di�ers from some sorted sequene at at most k positions (a so alled k-

disturbed sequene). The depth of the network is 4 logn+O(log

2

k log logn),

and hene for k = o

�

2

p

logn= log log n

�

, the depth of the network is 4 logn+

o(log n). Thus the onstant in front of logn is muh smaller than the on-

stant in the asymptotially optimal AKS sorting network.

� Setion 5 presents a periodi orretion network of a onstant depth that

sorts any k-disturbed sequene of length n in O(log n+ k) iterations.

Results of Setion 3 are due to M. Kuty lowski, G. Stahowiak and myself.

These results have been published in [8℄.

The result of Setion 4 is a re�nement of the onstrution from [6℄ and has

been been published as a joint work by M. Kuty lowski, M. Piotr�ow and myself

in [7℄.

The results of the Setion 5 are unpublished yet. They are inspired by the

idea presented by Grzegorz Stahowiak of adding the bak-jump omparators

to the network H

l

of the Subsetion 5.1.
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2 Preliminaries

In this setion we introdue formal de�nitions of the basi onepts used in

the remaining part of the thesis. We also present here some simple but useful

lemmas that simplify the analysis of the omparator network omputations.

Many onstrutions, de�nitions and proofs in this thesis might be regarded

at �rst by the reader as too formal. However, omparator networks require very

strit and preise de�nitions, sine in many ases even small hanges in their

onstrutions may ause serious deterioration of their performane.

We assume that all logarithms (unless stated otherwise) are to the base of

two.

De�nition 2.1 Let P = (P

1

; : : : ; P

k

) and Q = (Q

1

; : : : ; Q

l

) be two arbitrary

sequenes. By PQ we denote the sequene (P

1

; : : : ; P

k

; Q

1

; : : : ; Q

l

) (onatena-

tion of P and Q). By P

0

we denote an empty sequene, and for i > 0, P

i

denotes P

i�1

P .

De�nition 2.2 Let X be a �nite ordered set. Let x 2 X. Then the rank of x

in X is a positive integer r suh that r = jfy 2 X j y � xgj.

In the following de�nitions we formalize the notion of omparator network

introdued in Setion 1. We will identify the registers by their labels that are

integer numbers. The omparator is identi�ed by the pair of registers that it

ompares and the layer is a subset of omparators.

De�nition 2.3 Let R be any �nite subset of positive integers. We all a subset

L of R�R a layer over R if and only if:

� for eah (i; j) 2 L, i 6= j, and

� eah element of R is ontained by at most one ordered pair in L.

1

The elements of the layers are alled omparators.

De�nition 2.4 Let n and d be any positive integers. Let R be a set of n integers

(we all them registers). Let L = (L

1

; L

2

; : : : ; L

d

) be a sequene of layers over

S. Then by CN(n; d;R; L) we denote the omparator network of input size n,

depth d on the set of registers R with the sequene of layers L. For 1 � i � n,

by R

i

we denote the element of R with a rank i (i.e. the ith register of R).

De�nition 2.5 Let X be any ordered set. Let R be a set of n registers. Then

any funtion  : R ! X is alled a on�guration of R over X. The sequene

((R

1

); : : : ; (R

n

)) is alled a on�guration sequene of R. We say that the reg-

ister R

i

ontains the value (R

i

). For any subset of registers S

0

� fR

1

; : : : ; R

n

g

for any x 2 X, we say that  has k values x in S

0

if and only if jfR

i

2

S

0

j (R

i

) = xgj = k.

Let S � fR

1

; : : : ; R

n

g. We all a on�guration 

0

: S ! X a S-restrition

of  if and only if 

0

(R

i

) = (R

i

) for eah R

i

2 S.

1

In another ontext we all suh sets mathings.

6



De�nition 2.6 Let X be any ordered set. Let R be a set of n registers. Let 

be any on�guration of R over X. Let L be a layer over fR

1

; : : : ; R

n

g. Then

by L() we denote the on�guration 

0

of R over X obtained after exeuting

omparators from L:

� for eah (i; j) 2 L, 

0

(i) = minf(i); (j)g and 

0

(j) = maxf(i); (j)g (we

say that omparator (i; j) ompares the registers i and j in the layer L),

� for eah r 2 R suh that there is no pair ontaining r in L, 

0

(r) = (r).

We all L() a result of appliation of L on .

De�nition 2.7 Let X be an ordered set. Let R be a set n of registers. Let

L = (L

1

; : : : ; L

d

) be a sequene of layers over R. Let  be any on�guration

of R over X. For 0 � i � d we de�ne a sequene of on�gurations L(i; ) as

follows:

� L(0; ) = , and

� for 1 � i � d, L(i; ) = L

i

(L(i� 1; )):

We all the sequene (L(0; ); : : : ; L(d; )) a omputation trae of L on . We

also use L() to denote L(d; ).

The following de�nitions introdue notations used for onstruting new net-

works from already de�ned layers.

De�nition 2.8 Let S and S

0

be two �nite subsets of positive integers suh that

jSj = jS

0

j. Let f be any bijetion between S and S

0

. Let L be a layer over S.

Then the f -mapping of L is the layer L

0

over S

0

de�ned as follows:

L

0

= f(f(i); f(j)) j (i; j) 2 Lg:

If L is a sequene of layers (L

1

; : : : ; L

d

) over S, then the f-mapping of L is

a sequene L

0

= (L

0

1

; : : : ; L

0

d

), where L

0

i

is an f-mapping of L

i

.

De�nition 2.9 Let S and S

0

be any �nite subsets of positive integers. Let L

be a layer over S. Then the S

0

-restrition of L is the layer L

0

over S

0

de�ned

as follows:

L

0

= f(i; j) 2 L j i; j 2 S

0

g:

If L is a sequene of layers (L

1

; : : : ; L

d

) over S, then the S

0

-restrition of L

is a sequene L

0

= (L

0

1

; : : : ; L

0

d

), where L

0

i

is an S

0

-restrition of L

i

.

De�nition 2.10 Let S and S

0

be two subsets of registers. Let d � 1. Let

L = (L

1

; : : : ; L

d

) and L

0

= (L

0

1

; : : : ; L

0

d

) be the sequenes of layers over S and

S

0

respetively, suh that eah L

i

[L

0

i

is a layer over S [S

0

. Then the union of

L and L

0

(denoted by L [ L

0

) is the sequene of layers (L

1

[ L

0

1

; : : : ; L

d

[ L

0

d

).

7



De�nition 2.11 A omparator (r

1

; r

2

) is alled a standard omparator if and

only if r

1

< r

2

. A layer L is alled a standard layer if and only if it ontains

only standard omparators. A network CN(n; d;R; L) is a standard network if

and only if L is the sequene of standard layers.

All the omparator networks onsidered in the following setions are stan-

dard networks.

We will frequently use the following trivial but useful observation.

Lemma 2.12 � If L is a standard layer, then any S-restrition of L is also

a standard layer.

� If the union of standard layers is a layer, then it is a standard layer.

� If L is a standard layer over S and f : S ! S

0

is an inreasing one to one

funtion, then the f-mapping of L is a standard layer over S

0

.

The following simple lemma and orollary state that we an lip a standard

network to an arbitrary size preserving many of its properties.

Lemma 2.13 Let R be a set of n registers. Let m � n and R

0

= fR

1

; : : : ; R

m

g.

Let L be a standard layer over R and let L

0

be the R

0

-restrition of L. Let 

be a on�guration of R suh that (R

i

) = 

max

, for eah i > m, where 

max

=

maxf(r)jr 2 Rg. Let 

0

be the R

0

-restrition of . Then

1. L

0

(

0

) is an R

0

-restrition of L(), and

2. L()(R

i

) = 

max

for eah i > m.

Proof. Let r 2 R

0

. If there is no omparator in L ontaining r, then

L

0

(

0

)(r) = 

0

(r) = (r) = L()(r). If there is r

0

2 R

0

suh that

(minfr; r

0

g;maxfr; r

0

g) 2 L;

then

(minfr; r

0

g;maxfr; r

0

g) 2 L

0

and hene L

0

(

0

)(r) = L()(r). If there is r

0

2 R nR

0

suh that (r; r

0

) 2 L, then

(r

0

) = 

max

and hene L

0

(

0

)(r) = (r) = L()(r).

The seond property follows immediately from the fat that for i > m,

(R

i

) = 

max

and that any register onneted by a omparator to R

i

must

either be the �rst register of the omparator or ontain also the value 

max

in

on�guration . 2

An immediate onsequene of Lemma 2.13 is the following useful orollary.

Corollary 2.14 Let R, R

0

, , 

0

and 

max

be de�ned as in Lemma 2.13. Let L

be a sequene of standard layers over S, let L

0

be an S

0

-restrition of L. Then

1. L

0

(

0

) is an R

0

restrition of L(), and

8



L L

c c’

d d’

k -threshold

k -threshold

Figure 3: Lemma 2.18.

2. L()(R

i

) = 

max

for eah i > m.

De�nition 2.15 Let X be an ordered set and let R be a set of n registers. A net-

work CN(n; d;R; L) sorts a on�guration  of R (and the sequene ((R

1

); : : : ; (R

n

)))

if and only if the sequene (L()(R

1

); : : : ; L()(R

n

)) is a nondereasing sequene.

A network N = CN(n; d;R; L) is alled a sorting network over X if and

only if for all on�gurations  : R! X, network N sorts .

Any sorting network an be transformed into a standard sorting network of

the same depth and with the same number of omparators in eah layer (see

exerise 16 on page 239 in [11℄).

The following lemma from [11℄, alled Zero-One Priniple and is a funda-

mental tool for analyzing omparator networks.

Lemma 2.16 A omparator network N is a sorting network over any ordered

set X if and only if N is a sorting network over f0; 1g.

We all the on�gurations over f0; 1g zero-one on�gurations.

Zero-One Priniple is a onsequene of a slightly more general fat, whih

we present below.

De�nition 2.17 Let X be an ordered set. Let R be a set of n registers. Let 

be a on�guration of R over X and let Y be a set of values of . For integer k

a k-threshold of  is a on�guration 

0

of R over f0; 1g suh that:



0

(R

i

) =

�

0 if rank of (R

i

) in Y is less than k,

1 otherwise.

Lemma 2.18 Let X be an ordered set. Let R be a set of n registers. Let  be

a on�guration of R over X. Let k be any integer and let 

0

be a k-threshold of

. Let L be a layer over R. Let d = L() and let d

0

be a k-threshold of d. Then

d

0

= L(

0

). (See Fig. 3.)

Proof. Let Y be a set of values of . (Y is also a set of values of d.) Suppose

that d

0

6= L(

0

). Then there is an index i suh that d

0

(R

i

) 6= L(

0

)(R

i

), that is,

either d

0

(R

i

) = 0 and L(

0

)(R

i

) = 1 or d

0

(R

i

) = 0 and L(

0

)(R

i

) = 1. In the �rst

ase the rank of d(R

i

) = L()(R

i

) in Y is less than k. But L(

0

)(R

i

) = 1 implies

9



that 

0

(R

i

) = 1 or there is a omparator (R

j

; R

i

) in L where 

0

(R

j

) = 1. Thus

the rank of (R

i

) in Y is at least k or L()(R

i

) is maximum of the two values,

with at least one of them having the rank greater or equal k. Hene the rank of

L()(R

i

) must be greater or equal k. Contradition. The ase d

0

(R

i

) = 0 and

L(

0

)(R

i

) = 1 is analogous. 2

Lemma 2.19 Let X be an ordered set. Let R be a set of n registers. Let  be

a on�guration of R over X and Y be the set of values of . For 1 � k � n,

let 

k

be k-threshold of . Then there is no other on�guration 

0

with the set of

values Y suh that for eah k, 

k

is a k-threshold of 

0

.

Proof. Suppose that there is suh a on�guration 

0

, 

0

6= . Then (R

i

) 6=



0

(R

i

), for some i. The rank r of (R

i

) is di�erent from the rank r

0

of 

0

(R

i

) in

Y , sine Y is an ordered set. Consider the ase r < r

0

(equivalent to r+1 � r

0

).

Then 

r+1

(R

i

) = 0 whih is a ontradition to 

r+1

being a (r+ 1)-threshold of



0

. The ase r

0

< r is analogous. 2

Corollary 2.20 Let X, R, , Y and 

k

be de�ned as in Lemma 2.19. Then

there is no other on�guration 

0

with the set of values Y suh that for eah

2 � k � jY j, 

k

is a k-threshold of 

0

.

Proof. It follows from Lemma 2.19 and from the fat that 

1

is a onstant

funtion equal to 1 and, for k > jY j, on�gurations 

k

are onstant funtions

equal to 0, and the onstant k-thresholds do not impose any restritions on the

on�guration. 2

Lemma 2.21 Let X be an ordered set. Let R be a set of n registers. Let  and



0

be on�gurations of R over X with the same set of values and with eah value

ouring as many times in  as in 

0

. For 1 � k � n, let 

k

(respetively 

0

k

) be

a k-threshold of  (respetively 

0

). Let L be any layer over R. Then 

0

= L()

if and only if for eah k, 1 � k � n, 

0

k

= L(

k

).

Proof. If 

0

= L(), then by Lemma 2.18, for eah k, 

0

k

= L(

k

). If for eah

k, 1 � k � n, 

0

k

= L(

k

), then by the fat that eah L(

k

) is a k-threshold of

L() and by Lemma 2.19 we have 

0

= L(). 2

The following lemma is a simple but useful modi�ation of the zero-one

priniple.

Lemma 2.22 Let X be an ordered set. Let R be a set of n registers. Let  and



0

be on�gurations of R over X. For 1 � k � n, let 

k

(respetively 

0

k

) be a

k-threshold of  (respetively 

0

). Let L = (L

1

; : : : ; L

d

) be a sequene of layers

over R. Then 

0

= L(d; ) if and only if for eah k, 1 � k � n, 

0

k

= L(d; 

k

).

Proof. Immediate onsequene of Lemma 2.21 2

The following de�nition is spei� for the zero-one on�gurations.

10



De�nition 2.23 Let R be a set of n registers. Let  be a on�guration of R

over f0; 1g. Let p > 0. We say that  is p-dirty if and only if there is an index

i suh that for all 1 � j � i� 1, (R

j

) = 0 and for all i+ p � j � n, (R

j

) = 1.

The subset of registers that are between the �rst register ontaining one and the

last register ontaining zero is alled dirty region of .

11



Figure 4: The n-odd-even transposition network for n = 7. The �rst layer is

drawn with solid lines and the seond layer is drawn with dashed lines.

3 Periodi Sorting Networks

In this setion for arbitrary onstant k, we present a periodi network of a on-

stant depth that sorts a sequene of n elements in O(n

1=k

) iterations. The on-

strution of the network is based on the so alled (";m)-bloks. An (";m)-blok

is a generalization of the well known odd-even transposition sorting network

where the registers are replaed by the groups of m registers and the ompara-

tors are substituted by the so alled "-halvers.

3.1 Periodi Networks. Preliminaries

Reall that a periodi network (Setion 1.2) proesses the data stored in registers

in many iterations. Here we speify more formally the notion of a periodi

sorting network.

De�nition 3.1 Let N be a omparator network CN(n; d;R; L). N is a pe-

riodi sorting network if and only if for some positive integer t the network

CN(n; td;R; L

t

) is a sorting network. We say that N sorts in t iterations.

3.1.1 Odd-even transposition network

The simplest periodi sorting network is the following one:

De�nition 3.2 Let R = f1; 2; : : : ; ng. An n-odd-even transposition network

(see Fig. 4) is a network CN(n; 2; R; (L

1

; L

2

)), where

L

1

= f(i; i+ 1) j 1 � i < n and i is oddg

and

L

2

= f(i; i+ 1) j 2 � i < n and i is eveng:

Let us reall the following well known fats (see [11℄ and [4℄):

Lemma 3.3 [11℄ The n-odd-even transposition network sorts in dn=2e itera-

tions.

Lemma 3.4 [4℄ If a periodi standard network N on registers f1; : : : ; ng on-

tains all omparators of the n-odd-even transposition network, then for eah

k � n, N sorts eah k-dirty on�guration in at most k iterations.

12



3.1.2 "-halvers

In the onstrution of our periodi networks we will use omparator networks

alled "-halvers. The notion of "-halver was introdued in [1℄. Informally, halv-

ing is the task of moving the greater values to the seond half of the registers

and the smaller values to the �rst half of registers, so that no value in the �rst

half is bigger than any value in the seond half. The ordering of the values inside

a half does not matter. If we onsider only zero-one on�gurations of the set of

registers R of size 2m with x

0

zeroes and x

1

ones, then the halver either moves

all the ones to R

m+1

; : : : ; R

2m

or all the zeroes to R

1

; : : : ; R

m

. The exat halver

must have a depth 
(logm). This follows from the Alekseyev's lower bound

(n � t)dlog(t + 1)e on the number of omparators for seleting t = m smallest

elements in the sequene of length n = 2m. (See [11℄, page 234.)

Ajtai, Komolos and Szemeredi [1℄ introdued so alled "-halvers. The dif-

ferene between halvers and "-halvers is that in the later ase we demand that

"-halver leaves either at most "x

0

zeroes in R

m+1

; : : : ; R

2m

(if x

0

� x

1

), or at

most "x

1

ones in R

m+1

; : : : ; R

2m

(if x

1

� x

0

) instead of moving all zeroes or

ones to the proper half. It is surprising that, for " > 0, there exist "-halvers of

the depth independent on the number of their registers. This led to onstru-

tion of the famous AKS network. The onstrution of "-halvers is based on the

random bipartite graphs alled expanders. The tradeo� between the depth of

"-halver and the value ", and their random struture, make the networks based

on "-halvers rather impratial. However we use them in our onstrution to

obtain good asymptotial estimation of the runtime.

Below we introdue a more formal de�nition of an "-halver. First we de�ne

auxiliary funtions:

De�nition 3.5 Let " 2 [0;

1

2

) and let m > 0. We de�ne two funtions over

[0; 2m℄ (see Fig. 5):

f

";m

(x) =

�

"x for x � m;

m� (1� ")(2m� x) for x > m;

g

";m

(x) =

�

(1� ")x for x � m;

m� "(2m� x) for x > m:

Let us state the following obvious properties:

Lemma 3.6 f

";m

is a onvex funtion. The funtions f

";m

and g

";m

are non-

dereasing, ontinuous, and for 0 � x � 2m the following holds:

� 0 � f

";m

(x) � m, 0 � g

";m

(x) � m,

� f

";m

(x) � x, g

";m

(x) � x,

� f

";m

(x) + g

";m

(x) = x,

� f

";m

(x) = m� g

";m

(2m� x),

� g

";m

(x) = m� f

";m

(2m� x).

13
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ε

g

Figure 5: The funtions f

";m

and g

";m

De�nition 3.7 Let " � 0. Let n be an even positive integer. Let R = f1; : : : ; ng

be a set of registers. A omparator network N = CN(n; d;R; L) is an "-halver

on R if the following holds. For eah on�guration  of R over f0; 1g suh

that jfr 2 R j (r) = 1gj = x the on�guration 

0

= L(d; ) has the following

properties:

� jfr 2 R j r � n=2; 

0

(r) = 1gj � f

";n=2

(x), and

� jfr 2 R j r > n=2; 

0

(r) = 1gj � g

";n=2

(x).

Note that by the last equality stated in Lemma 3.6 "-halver is symmetrial

in the following sense:

Lemma 3.8 Let N be a "-halver on R = f1; : : : ; ng registers for some even n >

0. Let 

0

be an output on�guration of N for some input zero-one on�guration

 suh that jfr 2 R j (r) = 0gj = x. Then:

� jfr 2 R j r > n=2; 

0

(r) = 0gj � f

";n=2

(x), and

� jfr 2 R j r � n=2; 

0

(r) = 0gj � g

";n=2

(x).

The following lemma is due to Ajtai, Komolos and Szemeredi and states the

key property of "-halvers:

Lemma 3.9 [1℄ For eah " > 0 there exist a onstant positive integer d

"

, suh

that for eah even positive integer n, there is an "-halver on f1; : : : ; ng of depth

d

"

.

3.1.3 (";m)-bloks

Below we use "-halvers to de�ne (";m)-bloks that are the basi elements used

in the onstrution of our network. An (";m)-blok an be presented as the

odd-even transposition network, where eah register is replaed by a group of m

registers, and eah omparator is replaed by an "-halver on the orresponding

pairs of groups.
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K 1 K 2 K 3 K 6K 5K 4

ε -halver ε -halver ε -halver

K 1 K 2 K 3 K 6K 5K 4

ε -halver ε -halver

(a)

(b)

Figure 6: The upper (a) and the lower (b) part of an (";m; n)-blok, for n = 6m.

De�nition 3.10 Let " > 0. Let m and n be positive integers suh that n = km

for some integer k � 2. Let R = f1; : : : ; ng. LetN = CN(2m; d

"

; f1; : : : ; 2mg; L)

be an "-halver. For 1 � j � k let K

j

= f(j � 1)m + 1; : : : ; jmg and let

f

j

: f1; : : : ; 2mg ! K

j

[K

j+1

be a funtion suh that f

j

(i) = (j � 1)m+ i. We

all a network M = CN(n; 2d

"

; R; L

1

L

2

) an (";m; n)-blok (or shortly (";m)-

blok on R) if and only if for eah t, 1 � t � d

"

(see Fig. 6):

� L

1

is the union of the f

j

-mappings of L for all odd j, 1 � j < k,

� L

2

is the union of the f

j

-mappings of L for all even j, 2 � j < k.

We all the subsequene of layers L

1

an upper part of the (";m; n)-blok

and the subsequene of layers L

2

a lower part of the (";m; n)-blok. We all the

subset K

j

the jth m-buket of R.

If n is not a multiple of m, then by (";m; n)-blok we mean a network

CN(n; 2d

"

; (1; : : : ; n); L

0

), where L

0

is the f1; : : : ; ng-restrition of the sequene

of layers of the (";m; dn=mem)-blok.

Note that aording to De�nition 3.10 the n-odd-even transposition network

is an (0; 1; n)-blok but its depth is 2 instead of d

"

.

3.2 Properties of the (";m)-bloks

In this setion we prove Lemma 3.23, key property of (";m)-bloks. It states

that an (";m; n)-blok shrinks the dirty region to O(m logn) registers in O(n=m)

iterations. We ommene with some auxiliary lemmas and de�nitions.

De�nition 3.11 Let a = (a

1

; : : : ; a

l

) be a vetor of real numbers. For 1 �

i � l, hd

i

(a) (a head of a) denotes the pre�x sum

P

i

j=1

a

j

. (We assume that

hd

i

(a) = 0 for i < 1 and hd

i

(a) = hd

l

(a) for i > l). For 1 � i � l, tl

m;i

(a)

(a tail of a) denotes the sum

P

l

j=i

(m� a

j

). (We assume that tl

m;i

(a) = 0 for

i > l, and tl

m;i

(a) = tl

m;1

(a) for i < 1).

15



De�nition 3.12 Let a = (a

1

; : : : ; a

l

), b = (b

1

; : : : ; b

l

), where a

i

; b

i

2 [0;m℄ for

1 � i � l. We say that b dominates a (denoted by a � b) if and only if

hd

l

(a) = hd

l

(b) and hd

k

(b) � hd

k

(a), for every k, 1 � k � l.

Note that a � b if and only if tl

m;1

(a) = tl

m;1

(b) and tl

m;k

(b) � tl

m;k

(a) for

every 1 � k � l.

The following properties follow diretly from the de�nition.

Lemma 3.13 The relation � is a partial order on [0;m℄

l

.

Lemma 3.14 Let L be any sequene of standard layers on R = f1; : : : ; lmg.

Let  be a on�guration of R over f0; 1g. Let 

0

= L(). Let K

i

denote the ith

m-buket of R. Let x = (x

1

; : : : ; x

l

) and y = (y

1

; : : : ; y

l

) be two vetors suh

that for eah i, 1 � i � l,

� x

i

= jfj j j 2 K

i

; (j) = 1gj and

� y

i

= jfj j j 2 K

i

; 

0

(j) = 1gj.

Then x � y.

De�nition 3.15 Let " � 0. Let m > 0. Let a = (a

1

; : : : ; a

l

) be a vetor of

real numbers suh that a

i

2 [0;m℄ for all i. By N

";m

(a) we denote a vetor

x = (x

1

; : : : ; x

l

) suh that for eah odd j, 1 � j < l:

� x

j

= f

";m

(a

j

+ a

j+1

), and

� x

j+1

= g

";m

(a

j

+ a

j+1

) and

� if l is odd, then x

l

= a

l

.

By P

";m

(a) we denote a vetor x = (x

1

; : : : ; x

l

) suh that for eah even j,

2 � j < l:

� x

1

= a

1

, and

� x

j

= f

";m

(a

j

+ a

j+1

), and

� x

j+1

= g

";m

(a

j

+ a

j+1

) and

� if l is even, then x

l

= a

l

.

Let us omment the above de�nition. Let a = (a

1

; : : : ; a

l

) be a sequene

suh that a

i

is the number of ones in K

i

. Assume that an (";m)-blok exeutes

its upper part. Consider the number of ones that remain in K

i

for i odd. By the

de�nition of an "-halver, it is upper bounded by f

";m

(a

i

+ a

i+1

). The number

of ones in K

i+1

is at that moment at least g

";m

(a

i

+ a

i+1

). So we may regard

N

";m

(a) as a pessimisti estimate on the plaement of ones.

Lemma 3.16 Let x

1

and x

2

be two vetors from [0;m℄

l

suh that, for 1 � i �

l, hd

i

(x

1

) � hd

i

(x

2

): Then, for 1 � i � l, hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

))

(respetively hd

i

(P

";m

(x

1

)) � hd

i

(P

";m

(x

2

)) ).
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Proof. If i is even, then hd

i

(N

";m

(x

1

)) = hd

i

(x

1

) and hd

i

(N

";m

(x

2

)) =

hd

i

(x

2

). If i is odd, then

hd

i

(N

";m

(x

1

)) = hd

i�1

(x

1

) + f

";m

(x

1;i

+ x

1;i+1

)

= hd

i+1

(x

1

) � g

";m

(x

1;i

+ x

1;i+1

)

and

hd

i

(N

";m

(x

2

)) = hd

i�1

(x

2

) + f

";m

(x

2;i

+ x

2;i+1

)

= hd

i+1

(x

2

) � g

";m

(x

2;i

+ x

2;i+1

):

If x

1;i

+ x

1;i+1

� x

2;i

+ x

2;i+1

, then by the fat that

hd

i�1

(N

";m

(x

1

)) � hd

i�1

(N

";m

(x

2

))

and that f

";m

is nondereasing funtion we have

hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

)):

If x

1;i

+ x

1;i+1

> x

2;i

+ x

2;i+1

then by the fat that

hd

i+1

(N

";m

(x

1

)) � hd

i+1

(N

";m

(x

2

))

and that g

";m

is nondereasing funtion we have

hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

)):

The proof of the laim for P

";m

is analogous.

Lemma 3.17 Let x and y be two vetors from [0;m℄

l

suh that x � y. Then

N

";m

(x) � N

";m

(y) and P

";m

(x) � P

";m

(y).

Proof. The lemma follows diretly from Claim 3.16. 2

Lemma 3.18 Let R = f1; : : : ; lmg be a sequene of registers. Let L be an upper

(respetively a lower) part of the (";m)-blok on R. Let  be any on�guration

of R over f0; 1g. Let 

0

= L(). Let x = (x

1

; : : : ; x

l

) and y = (y

1

; : : : ; y

l

) be

vetors suh that, for eah i, 1 � i � l,

x

i

= jfj j j 2 K

i

; (j) = 1gj

and

y

i

= jfj j j 2 K

i

; 

0

(j) = 1gj;

where K

i

is ith m-buket of R. Let x

0

2 [0;m℄

l

be any vetor suh that x

0

� x.

Then N

";m

(x

0

) � y (respetively P

";m

(x

0

) � y).

17



Proof. We prove the lemma only for the upper part of the (";m)-blok and

N

";m

. The lemma for the lower part and P

";m

is analogous. By Lemma 3.17,

N

";m

(x

0

) � N

";m

(x). Thus it is suÆient to show that N

";m

(x) � y. If i is

even or i = l, then hd

i

(N

";m

(x)) = hd

i

(x) = hd

i

(y). If i is odd and i < l, then

hd

i

(N

";m

(x)) = hd

i�1

(x) + f

";m

(x

i

+ x

i+1

) = hd

i+1

(x) � g

";m

(x

i

+ x

i+1

). On

the other hand, by the fat that there is "-halver on the K

i

[K

i+1

in the upper

part of (";m)-blok,

hd

i

(y) � hd

i�1

(y) + f

";m

(y

i

+ y

i+1

) = hd

i+1

(y) � g

";m

(y

i

+ y

i+1

):

Consider the ases x

i

+ x

i+1

� y

i

+ y

i+1

and x

i

+ x

i+1

< y

i

+ y

i+1

, in a similar

way as in the proof of Lemma 3.16:

� If x

i

+ x

i+1

� y

i

+ y

i+1

, then hd

i

(y) � hd

i�1

(y) + f

";m

(y

i

+ y

i+1

) �

hd

i�1

(x) + f

";m

(x

i

+ x

i+1

) = hd

i

(N

";m

(x)).

� If x

i

+ x

i+1

< y

i

+ y

i+1

, then hd

i

(y) � hd

i+1

(y) � g

";m

(y

i

+ y

i+1

) �

hd

i+1

(x) � g

";m

(x

i

+ x

i+1

) = hd

i

(N

";m

(x)).

Thus hd

i

(y) � hd

i

(N

";m

(x)). 2

De�nition 3.19 Let " � 0. Let m > 0. Let x 2 [0;m℄

l

. For integers t � 0 we

de�ne a sequene V

t

";m

(x) as follows:

� V

0

";m

(x) = x,

� V

t

";m

(x) = N

";m

(V

t�1

";m

(x)) for odd t � 1,

� V

t

";m

(x) = P

";m

(V

t�1

";m

(x)) for even t � 2.

(If t is not integer, then by V

t

";m

(x) we denote V

dte

";m

(x).)

Let x be the minimal vetor in [0;m℄

l

with the sum of oordinates equal to

the number of ones in some initial zero-one on�guration. We use the values

V

t

";m

(x) to estimate a vetor of the numbers of ones in the bukets of registers

after appliation of the layers ontaining an (";m)-blok. We assume that the

sequene of layers of the onsidered network is of the form XULY , where U

and L are the upper and lower parts of the (";m)-blok respetively, and X and

Y are arbitrary sequenes of standard layers. We onsider the on�gurations

obtained after the whole iterations and after the XU parts of the iterations.

Lemma 3.20 Let R = f1; : : : ; lmg be a set of registers. Let U and L be respe-

tively the upper and the lower part of an (";m)-blok on R. Let X and Y be any

sequenes of standard layers over R. Let  be any on�guration of R over f0; 1g,

and let jfi j (i) = 1gj = km +m

0

, where k is an integer and 0 � m

0

< m. For

t � 0 let the sequene of on�gurations 

t

be de�ned as follows:

� 

0

= ,

� 

t

= XU(

t�1

) for odd t � 1,

18



� 

t

= LY (

t�1

) for even t � 2.

For eah t � 0, for 1 � i � l, let y

t;i

= jfj 2 K

i

j (j) = 1gj, where K

i

is the

ith m-buket, and let y

t

= (y

t;1

; : : : ; y

t;l

). Let x = (x

1

; : : : ; x

l

) be a vetor suh

that, for 1 � i � k, x

i

= m and x

k+1

= m

0

and for k + 1 < i � m, x

i

= 0.

Then for eah t � 0, V

t

";m

(x) � y

t

.

Proof. The vetor x is the minimal element in [0;m℄

l

in relation � suh

that hd

l

equals km + m

0

. Thus x � y

0

. It follows by indution from Lemmas

3.14 and 3.18 that V

t

";m

(x) � y

t

. 2

The proof of the following ombinatorial lemma (inluded in Appendix A)

has been invented by Grzegorz Stahowiak. Here we onsider only the values of

hd

i

(V

t

";m

(x)) and tl

m;t

(V

t

";m

(x)), where the vetor x is of the form (m)

k

(0)

l�k

(i.e. a minimal vetor with the sum of oordinates equal to km). The lemma

states that, for t = �l, the sum of the oordinates of the vetor V

t

";m

(x) that

are outside the last k + � log(lm) oordinates is less than one, where � and �

are onstant. That is, almost all the weight of the vetor is shifted to the last

k + � log(lm) oordinates. Suh a vetor orresponds to an \almost" sorted

on�guration of zeroes and ones. The lemma also states analogous result for

the tail of the V

t

";m

(x).

Lemma 3.21 Let 0 � " <

1

3

. There exist onstants �, � suh that, for eah

m > 0, for eah positive integers l and k, suh that ml � 12 and k � l, for eah

vetor x = (m)

k

(0)

l�k

the vetor y = V

�l

";m

(x) has following properties:

� hd

bl�k�� log(lm)

(y) < 1, and

� tl

m;dl�k+� log(lm)e

(y) < 1.

Proof. See Appendix A. 2

Note that hd

bl�k�� log(lm)

(y) an be used to upper bound the number of

ones in the bukets K

1

through K

bl�k�� log(lm)

. Sine the last number is non-

negative integer, it must be zero if hd

bl�k�� log(lm)

(y) < 1. For this reason

estimations of the form hd

bl�k�� log(lm)

(y) < 1 and tl

m;dl�k+� log(lm)e

(y) < 1

are all we need.

In Lemma 3.21 we assume that the number of ones is a multiple of m. This

an be easily generalized to the ase where the number of ones is arbitrary:

Corollary 3.22 Let ", �, �, m, and l be as in Lemma 3.21. Let k be a non-

negative integer, k < l. Let x = (m)

k

(m

0

)(0)

l�k�1

, where 0 � m

0

� m. Then

vetor y = V

�l

";m

(x) has the following properties:

� hd

bl�k�1�� log(lm)

(y) < 1, and

� tl

m;dl�k+� log(lm)e

(y) < 1.

Proof. The orollary follows from Lemma 3.21 and from the fat that for

all t � 0, for 1 � i � l,

hd

i

(V

t

";m

(x)) � hd

i

(V

t

";m

((m)

k+1

(0)

l�k�1

)) (1)
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and

tl

m;i

(V

t

";m

((m)

k

(0)

l�k

)) � tl

m;i

(V

t

";m

(x)):

The �rst inequality (1) follows by indution on t from Lemma 3.16. The

seond inequality an be shown in a similar way. 2

Lemma 3.23 Let 0 < " <

1

3

. Let R = f1; : : : ; ng be a sequene of registers.

Let M = CN(n; d;R; L) be an (";m)-blok. Let  be a mp-dirty on�guration of

R, with p suh that m(p + 1) � 12. Let X and Y be two sequenes of standard

layers. There exist two positive values �

0

and �

0

that depend only on " suh that

the on�guration 

0

= (XLY )

d�

0

pe

() is md�

0

log((p + 1)m)e-dirty.

Proof. Let K

j

be the �rst buket of M that ontains a one. Then K

j+p

is the last buket that may ontain a zero. Let S =

S

j�i�j+p

K

i

. Let L

0

(respetively, X

0

and Y

0

) be a S-restrition of L (respetively, of X and Y ). All

omparators that are in XLY are standard omparators, thus all omparators

that are not in X

0

L

0

Y

0

do not hange the values in their registers and the S-

restrition of 

0

is equal to (X

0

L

0

Y

0

)

d�pe

(

S

), where 

S

is the S-restrition of .

Note that L

0

is a sequene of layers of an (";m)-blok on the registers of S. Let

L

0

1

be the upper part of L

0

and L

0

2

be the lower part of L

0

.

Let 

0

= 

S

and for odd t � 1, let 

t

= X

0

L

0

1

(

t�1

) and let 

t+1

= L

0

2

Y

0

(

t

).

For t � 0, let x

t

= (x

t;1

; : : : ; x

t;p+1

) be a vetor suh that x

t;i

is the number of

ones in K

j+i�1

in on�guration 

t

. Let q =

P

l

i=1

x

0;i

(i.e. q is the number of

ones in 

S

). Let k = bq=m and m

0

= q�km. We de�ne x

0

= (m)

k

(m

0

)(0)

l�k�1

and for t � 0 let x

0

t

= V

t

";m

(x

0

). That is, x

0

is the smallest vetor with respet

to � that represents a on�guration with the same number of ones as 

S

.

It follows from Lemma 3.20 that for eah t � 0, x

0

t

� x

t

. That means that

for eah i, 1 � i � l,

hd

i

(x

0

t

) � hd

i

(x

t

)

and

tl

m;i

(x

0

t

) � tl

m;i

(x

t

):

By Corollary 3.22, there exist two onstants � and �, suh that

hd

bp�k�� log((p+1)m)

(x

0

d�pe

) < 1

and

tl

m;dp+1�k+� log((p+1)m)e

(x

0

d�pe

) < 1:

Thus

hd

bp�k�� log((p+1)m)

(x

d�pe

) = 0

and

tl

m;dp+1�k+� log((p+1)m)e

(x

d�pe

) = 0;

sine they must be nonnegative integers. Note that

dp+ 1� k+� log((p+ 1)m)e�bp� k�� log((p+ 1)m) � 2 + 2� log((p+ 1)m):

Thus we an hoose the onstants �

0

and �

0

as respetively � and 2� + 2. 2
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3.3 Periodi sorting network de�nition and analysis

The struture of our network is following: The layers are divided into k + 1

groups, eah of them orresponding to an (";m

i

)-blok, for arefully hosen

sizes m

i

. The idea is that the omputation an be divided into virtual phases:

During Phase 1, we shrink the size of a dirty region to from n = m

1

n

1=k

to

m

2

n

1=k

. For this purpose we use (";m

1

)-blok as in Lemma 3.23 and disregard

in the analysis other layers. We only note that they are standard layers. Then

we start the seond virtual phase. For this purpose we onsider only the bukets

of the (";m

2

)-blok that interset the dirty region. Again we use Lemma 3.23 to

show that the size of dirty region is shrunk to m

3

n

1=k

. We iterate this approah

k times until we get a sequene that is O(log

k+1

n)-dirty. Then we apply odd-

even transposition sorting network as the last blok. This allows to �nish sorting

in the time proportional to the size of the last dirty region.

De�nition 3.24 Let 0 < " <

1

3

. Let �

0

be the onstant de�ned in Lemma 3.23.

Let k � 2 be a positive integer. For a positive integer n � 2

k+2

, we de�ne a

network I

";k;n

as a omparator network CN(n; 2kd

"

+ 2; f1; : : : ; ng; L), where

L = L

1

L

2

: : : L

k

L

k+1

, suh that for eah i, 1 � i � k, L

i

is a sequene of layers

of (";m

i

)-blok on f1; : : : ; ng, where

� m

1

= dn

(k�1)=k

e, and

� for 2 � i � k, m

i

= dm

i�1

=n

1=k

ed�

0

log(2n)e,

and L

k+1

is a sequene of the two layers of n-odd-even transposition network.

Note that for k � 2 and n � 2

k+2

the following holds: n

1=k

� 2 and

dn

(k�1)=k

e(n

1=k

+ 1) � 2n. (Indeed: (n

(k�1)=k

+ 1)(n

1=k

+ 1) � 2n if and only

if (n

(k�1)=k

� 1)(n

1=k

� 1) � 2. On the other hand n

1=k

� 1 � 2

(k+2)=k

� 1 > 1

and n

(k�1)=k

� 1 � 2

(k+2)(k�1)=k

� 1 � 3 sine k � 2.)

We assume that n is large enough, to have m

i

n

1=k

� 12, for 1 � i � k.

Theorem 3.25 The network I

";k;n

sorts any input in O(kn

1=k

) iterations.

Proof. Let �

0

and �

0

be the onstants �

0

and �

0

from Lemma 3.23. Note

that for eah i, 1 � i � k, the sequene of layers of I

";k;n

has a following

struture: L = X

i

L

i

Y

i

, where L

i

is a sequene of layers of the (";m

i

)-blok,

and X

i

and Y

i

are sequenes of standard layers.

Claim 3.26 Let 

0

be any on�guration over f0; 1g and, for 0 < i < k, let



i

= (X

i

L

i

Y

i

)

d�

0

n

1=k

e

(

i�1

). Then, for 0 � i < k, 

i

is (m

i+1

n

1=k

)-dirty.

Obviously, 

0

is at most (m

1

n

1=k

)-dirty. By Lemma 3.23 if 

i�1

is (m

i

n

1=k

)-

dirty, then 

i

is at most (m

i

d�

0

log((n

1=k

+ 1)m

i

)e)-dirty. But

m

i

d�

0

log((n

1=k

+ 1)m

i

)e � n

1=k

dm

i

=n

1=k

ed�

0

log(2n)e = n

1=k

m

i+1

:

It follows that 

k

= L

kd�

0

n

1=k

e

(

0

) is (m

k

d�

0

log((n

1=k

+ 1)m

k

)e)-dirty.
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Claim 3.27 For 1 � i � k,

m

i

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i�1

:

It follows from the de�nition of m

i

that

m

1

� n

(k�1)=k

+ 1

and that, for 1 � i � k � 1, if

m

i

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i�1

;

then

m

i+1

�

0

�

n

(k�i�1)=k

+

i

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i

:

Indeed:

m

i+1

= dm

i

=n

1=k

ed�

0

log(2n)e

�

2

6

6

6

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

� d�

0

log(2n)e

i�1

3

7

7

7

d�

0

log(2n)e

�

2

6

6

6

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

3

7

7

7

� d�

0

log(2n)e

i

�

0

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

+ 1

1

A

� d�

0

log(2n)e

i

=

0

�

n

(k�i�1)=k

+

i

X

j=0

1=n

j=k

1

A

� d�

0

log(2n)e

i

:

By Claim 3.27, m

k

�

�

1 +

P

k

j=0

1=n

j=k

�

d�

0

log(2n)e

k

.

We assume that n

1=k

� 2, so m

k

� 3d�

0

log(2n)e

k

and m

k

d�

0

log((n

1=k

+

1)m

k

)e � 3d�

0

log(2n)e

k+1

. Thus 

k

is (3d�

0

log(2n)e

k+1

)-dirty. L = XL

k+1

,

where X is a sequene of standard layers and L

k+1

is the sequene of the two

layers of n-odd-even transposition network. By Lemma 3.4 suh a network sorts

the (3d�

0

log(2n)e

k+1

)-dirty on�guration in 3d�

0

log(2n)e

k+1

iterations. Thus

the total number of the iterations of I

";k;n

needed for sorting arbitrary n-dirty

on�guration 

0

is

kd�

0

n

1=k

e+ 3d�

0

log(2n)e

k+1

= O(kn

1=k

):
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The sorting time (i.e. the depth of I

";k;n

multiplied by the number of iterations)

is

T

n;k

= (2kd

"

+ 2)(kd�

0

n

1=k

e+ 3d�

0

log(2n)e

k+1

);

where d

"

is the depth of the "-halver. Sine d

"

is onstant, we have

T

n;k

= O(k

2

n

1=k

):

2
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4 Corretion Network

In this setion we onsider a problem of sorting sequenes of length n that are

obtained from a sorted sequene by hanging the values of at most its k elements,

where k is muh smaller than n.

De�nition 4.1 A sequene (a

1

; : : : ; a

n

) is alled k-disturbed if and only if it

an be obtained from some sorted sequene s by hanging values of at most k

elements of s. A on�guration  of the set of n registers R is alled a k-disturbed

on�guration if and only if a sequene ((R

1

); : : : ; (R

n

)) is k-disturbed.

The expression \k-disturbed" should be understood \at most k-disturbed".

Note that sequene is k-disturbed if and only if it an be transformed into

a sorted sequene by hanging at most k of its elements. Note also that a

0-disturbed sequene is a sorted sequene.

The main result presented in this setion is the following theorem:

Theorem 4.2 Let n and k be arbitrary positive integers suh that k � n. Then

there is an expliit onstrution of a omparator network of depth 4 logn +

O(log

2

k log logn) that sorts any k-disturbed input sequene.

Note for k = o

�

2

p

logn= log logn

�

the depth of the network is 4 logn+o(logn).

4.1 Corretion networks. Preliminaries

De�nition 4.3 Let R be a set of n registers. A network N = CN(n; d;R; L)

is alled a k-orretion network on R if and only if for eah k-disturbed on�g-

uration  of R, the sequene (L(d; )(R

1

); : : : ; L(d; )(R

n

)) is sorted.

De�nition 4.4 Let R be a set of n registers. Let  be any on�guration of

R over f0; 1g suh that jfi j (R

i

) = 0gj = x. Then the zeroes area of 

(respetively ones area of ) denotes the set of registers fR

i

j 1 � i � xg

(respetively fR

i

j x + 1 � i � ng). We all a displaed one a one ontained in

a register from the zeros area. We all a displaed zero a zero ontained in a

register from the ones area.

Lemma 4.5 Let R be a set of n registers. Let k � 0. Let  be any k-disturbed

on�guration of R over f0; 1g. Then  has at most k displaed zeroes and at

most k displaed ones.

Proof. Suppose that  has more than k zeroes in the ones area. Then

there has to be more than k ones in the zeroes area. Then in the sequene

s = ((R

1

); : : : ; (R

n

)) a group of at least k + 1 ones is entirely on the left side

of a group of at least k + 1 zeroes. To hange the sequene s into a sorted

sequene we have to hange the values of at least k + 1 elements. Thus  is not

k-disturbed. 2
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Figure 7: The networks INS

1

16

and INS

0

16

Lemma 4.6 Let R be a set of n registers. Let  be any k-disturbed on�guration

of R over X. For eah l, 1 � l � n let 

l

be the l-threshold of . Then 

l

is

k-disturbed.

Proof. Suppose that for some l, 

l

is not k-disturbed. Let

x

l

= minf(R

i

) j 

l

(R

i

) = 1g:

Let 

0

be a on�guration obtained from  by hanging at most k of its values

suh that the sequene (

0

(R

1

); : : : ; 

0

(R

n

)) is sorted. Let 

00

be a on�guration

of R over f0; 1g suh that 

00

(R

i

) = 0 if and only if 

0

(R

i

) < x

l

. Then 

00

an

be obtained from 

l

by hanging at most k of its values, sine 

l

(R) 6= 

00

(R) if

and only if (R) � x

l

and 

0

(R) < x

l

or (R) > x

l

and 

0

(R) � x

l

(i.e. R is

one of the at most k registers, where  and 

0

di�er). On the other hand, the

sequene (

00

(R

1

); : : : ; 

00

(R

n

)) is sorted. Contradition with the fat that 

l

is

not k-disturbed. 2

Lemma 4.7 The omparator network N is a k-orretion network if and only

if N sorts all k-disturbed zero-one sequenes.

Proof. It follows from Lemmas 4.6 and 2.22. 2

4.2 Auxiliary networks

The following de�nitions introdue the lassial insertion networks INS

1

n

and

INS

0

n

. The network INS

1

n

inserts any value plaed in its �rst register to the

sorted sequene stored in the remaining registers. (That is, INS

1

n

sorts any

sequene that di�ers from the sorted sequene only at the �rst position.) Anal-

ogously, the network INS

0

n

sorts any sequene that di�ers from the sorted se-

quene only at the last position.
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De�nition 4.8 Let m be a positive integer. For n = 2

m

, we de�ne a network

INS

1

n

= CN(n;m;R;L) on the set of registers R = f1; : : : ; ng with the following

layers L = (L

1

; : : : ; L

m

) (see Fig. 8):

� if m = 1, then L = (f(1; 2)g),

� if m > 1, then L = L

0

(L

m

), where:

{ L

m

= f(i; i+ 1) j 1 � i � n� 1; i is oddg

{ L

0

is the f-mapping of the sequene of layers of INS

1

n=2

, where

f(x) = 2x� 1.

If n > 1 is not a power of two, then

INS

1

n

= CN(n; dlogne; f1; : : : ; ng; L

00

);

where L

00

is a f1; : : : ; ng-restrition of the sequene of layers of INS

1

2

dlogne

.

De�nition 4.9 The network INS

0

n

is dual to INS

1

n

. That is

INS

0

n

= CN(n; dlogne; f1; : : : ; ng; L);

where L = (L

1

; : : : ; L

2dlogne�1

), and L

i

= f(n� j + 1; n� i + 1) j (i; j) 2 L

0

i

g,

where L

0

i

denotes the ith layer of INS

1

n

.

Below we de�ne simple networks I

1

n

and I

0

n

that are able to sort 1-disturbed

sequene of zeroes and ones provided that a zero has been hanged to a one (in

the ase of I

1

n

) or a one has been hanged to zero (in the ase of I

0

n

). Examples

of these networks are depited on Fig. 8.

De�nition 4.10 Let m be a positive integer. For n = 2

m

, we de�ne a net-

work I

1

n

= CN(n; 2m� 1; R; L) on the set of registers R = f1; : : : ; ng with the

following layers L = (L

1

; : : : ; L

2m�1

):

� if m = 1, then L = (f(1; 2)g),

� if m > 1, then L = (L

1

)L

0

(L

2m�1

), where:

{ L

1

= f(i; i+ 1) j 2 � i � n� 2; i is eveng

{ L

2m�1

= f(i; i+ 1) j 1 � i � n� 1; i is oddg

{ L

0

is the f-mapping of the sequene of layers of I

1

n=2

, where f(x) =

2x� 1.

If n > 1 is not a power of two, then

I

1

n

= CN(n; 2dlogne � 1; f1; : : : ; ng; L

00

);

where L

00

is a f1; : : : ; ng-restrition of the sequene of layers of I

1

2

dlog ne

.
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Figure 8: The networks I

1
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and I

0
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De�nition 4.11 The network I

0

n

is dual to I

1

n

. That is

I

0

n

= CN(n; 2dlogne � 1; f1; : : : ; ng; L);

where L = (L

1

; : : : ; L

2dlogne�1

), and L

i

= f(n� j + 1; n� i + 1) j (i; j) 2 L

0

i

g,

where L

0

i

denotes the ith layer of I

1

n

.

Lemma 4.12 The network I

1

n

(respetively I

0

n

) sorts any zero-one input se-

quene that has been obtained from a sorted zero-one sequene by hanging a

single zero into a one (respetively, a single one into a zero).

Proof. We prove only the lemma for I

1

n

. The proof for I

0

n

is analogous.

For n = 2, the lemma is obviously true. Let n = 2

m

, for some m > 1. Let

a = (a

1

; : : : ; a

n

) be a zero-one sequene obtained from a sorted sequene by

hanging a single zero element into a one. Let a

0

= (a

0

1

; : : : ; a

0

n

) be a sequene

that is a result of applying the �rst layer of I

1

n

to the sequene a. Then the

subsequene b of a

0

on the even registers is sorted. The subsequene b

0

of a

0

on

the odd registers an be obtained from a sorted sequene by hanging a single

zero into a one. The number of ones in b

0

is not less than the number of ones

in b and not greater than the number of ones in b plus one. Let  = (

1

; : : : ; 

n

)

be a sequene obtained by applying the next 2m � 3 layers of I

1

n

to a

0

. The

subsequene d of  on even registers is equal to b, sine these layers ontain no

omparators with even registers. The subsequene d

0

of  on odd registers is a

sorted sequene b

0

, sine these layers are the mapping of the layers of I

1

n=2

on

the odd registers. If the number of ones in d

0

is equal to the number of ones in

d, then  is already sorted. Otherwise the number of ones in d

0

is at most one

more than the number of ones in d. The last layer of I

1

n

shifts the �rst one in 

into next even register and the output beomes sorted.

Note that the network I

1

2

dlog ne

sorts all the zero-one sequenes obtained from

a sorted zero-one sequene by hanging a single zero into a one that have only
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ones in registers greater than n. Thus for n that is not a power of two, the

lemma follows from Corollary 2.14. 2

In the following de�nitions we introdue a notion of a k-merge version of a

omparator network M : a omparator network obtained from M by replaing

the registers of M by the bukets of k registers and by replaing the omparators

of M by the merging subnetworks on the orresponding pairs of bukets.

Let BM

k

= CN(2k;m

k

; f1; : : : ; 2kg; B) denote the Bather merging network

for two sorted sequenes plaed in the registers f1; : : : ; kg and fk + 1; : : : ; 2kg.

Let BS

k

= CN(k; d

k

; f1; : : : ; kg; B

0

) denote the Bather sorting network for the

sequenes of length k.

De�nition 4.13 Let k > 0. For i 6= j, let

f

i;j

: f1; : : : ; 2kg ! f(i� 1)k + 1; : : : ; ikg [ f(j � 1)k + 1; : : : ; jkg

be a bijetion de�ned as follows:

f

i;j

(x) =

�

(i� 1)k + x if x � k;

(j � 1)k + (x� k) if x > k:

Let M = CN(n; d;R; L), where R = f1; : : : ; ng and L = (L

1

; : : : ; L

d

). We

all a network M

k

= CN(kn;m

k

d;R

0

; L

0

) a k-merge version of M if and only

if R

0

= f1; : : : ; kng, and L

0

= L

0

1

: : : L

0

d

, where for eah t, 1 � t � d, the

subsequene of layers L

0

t

is the union of f

i;j

-mappings of B for all (i; j) 2 L

t

.

Let B

00

be a union of f

i

-mappings of B

0

, where 1 � i � n and f

i

(x) =

(i� 1)k + x. Let M

0

k

= CN(kn; d

k

+m

k

d;R

0

; B

00

L

0

). We all M

0

k

an extended

k-merge version of M .

For 1 � i � n we all a subset of registers K

i

= fr j (i� 1)k + 1 � i � ikg

the ith buket of M

k

.

Lemma 4.14 Let S

n

= CN(n; d; f1; : : : ; ng; L) be a 1-orretion network of

depth d for the input sequenes of length n. Let S

n;k

be the extended k merge

version of S

n

. Then the S

n;k

is a k-orretion network for the input sequenes

of length kn.

Proof. Let a = (a

1

; : : : ; a

nk

) be a k-disturbed 0-1 sequene. Let x denote

the number of zeroes in a. (We assume that x > 0.) Let a

0

= (a

0

1

; : : : ; a

0

nk

) be

a sequene obtained after sorting the bukets within the �rst d

k

layers of S

n;k

(where d

k

is the depth of the Bather sorting network BS

k

used in onstrution

of the S

n;k

). Let x

0

= dx=ke. Thus buket x

0

is the last one that intersets the

zero area.

We show that after appliation of the remaining part of S

n;k

to the sequene

(a

0

1

; : : : ; a

0

nk

) all the bukets with indies greater than x

0

will be leared from

zeroes. Analogous reasoning an be used to show that all the bukets with the

numbers less than x

0

will be leared from ones. Sine all the bukets remain

sorted this implies that the whole output is also sorted.

For 1 � v � y < w � n, let 

v;w;y

denote a sequene obtained from the

sorted 0-1 sequene with exatly y zeroes by hanging a zero on position v into
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a one and a one on position w into a zero. Let d

v;w;y

denote the minimal d

suh that after applying the �rst d layers of S

n

on input 

v;w;y

we get a sorted

sequene. Note that the layer d

v;w;y

is the �rst and the only layer within whih

the displaed zero is ompared with the displaed one.

We onsider all displaed zeroes in a

0

in bukets x

0

+ 1; : : : ; n. We show that

S

n;k

gets rid of displaed zeroes in these bukets. In the same way, we may show

that S

n;k

gets rid of displaed ones in bukets 1; : : : ; x

0

� 1. Sine S

n;k

outputs

buket x

0

in a sorted state, it follows that the whole output is sorted.

Let m be the number of zeroes in bukets x

0

+ 1; : : : ; n in a

0

and let W

denote the set of their positions. All these zeroes are, of ourse, displaed. Let

l denote the number of ones in bukets 1 through x

0

in a

0

and let V be the set

of their positions (some of these ones are displaed, those from buket x

0

are

not neessarily displaed). Obviously, m � l and m � k. For eah j 2 W , we

hoose an i 2 V using an indutive proedure based on the following onditions:

� We set V

0

= V and W

0

= W .

� For eah t, 1 � t � m,

{ we set i

t

= v and j

t

= w, where is (v; w) is one of the pairs from

V

t�1

�W

t�1

that minimizes the value d

dv=ke;dw=ke;x

0

, and

{ we set V

t

= V

t�1

n fi

t

g and W

t

= W

t�1

n fj

t

g.

The idea is the following. A displaed zero terminates to be displaed at the

moment when the buket ontaining it is merged with a buket with an index

at most x

0

and ontaining a one. In fat, if the seond buket ontains less ones

than there are zeroes in the �rst buket, then some of the zeroes must remain

in the �rst buket and are still displaed. For any displaed zero, our de�nition

�xes a one that may ause the zero to �nish its status of an displaed element.

Let 

v;w;y;t

denote the sequene stored in the registers of S

n

after applying

the �rst t layers of S

n

on input 

v;w;y

. For 1 � i � n and t � 0, let p

i;t

denote the number of sequenes among 

di

1

=ke;dj

1

=ke;x

0

;t

; : : : ; 

di

m

=ke;dj

m

=ke;x

0

;t

that ontain ones at position i. Let p

0

i;t

denote the number of ones in buket i

after applying the �rst d

k

+ t � 

k

layers of S

n;k

to input a (where 

k

is a depth

of a Bather merging network BM

k

used in onstrution of S

n;k

). We prove the

following tehnial laim:

Claim 4.15 1. If 1 � i � x

0

, then p

i;t

� p

0

i;t

.

That is, the number of ones in the buket i at moment t is at least p

i;t

.

2. If x

0

< i � n, then m� p

i;t

� k � p

0

i;t

.

That is, the number of zeroes in the buket i at moment t is at most

m� p

i;t

.

Proof of the laim. The proof is by indution on t.

For t = 0 the properties follow from the way we have de�ned the sequenes

i

1

; : : : ; i

m

and j

1

; : : : ; j

m

. (Property 1 is implied by fi

1

; : : : ; i

m

g � V and Prop-

erty 2 is implied by W � fj

1

; : : : ; j

m

g.)

Let t > 0. For eah register R

i

of S

n

, 1 � i � n, there are three possibilities:
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Case 1. There is no omparator inident to R

i

in layer t of S

n

.

Case 2. There is an omparator (R

j

; R

i

) in layer t of S

n

.

Case 3. There is an omparator (R

i

; R

j

) in layer t of S

n

.

The �rst ase is trivial. We have p

i;t

= p

i;t�1

and p

0

i;t

= p

0

i;t�1

, so Properties 1

and 2 of the laim follow from the indution hypothesis.

Proof of Property 1 of Claim 4.15. Let 1 � i � x

0

.

In the seond ase,

p

i;t

= p

i;t�1

+ p

j;t�1

and, as always, p

i;t

� m � k. In S

n;k

there is a network merging bukets j and

i in the orresponding layers. Thus

p

0

i;t

= minfk; p

0

i;t�1

+ p

0

j;t�1

g

(sine if we merge two bukets ontaining initially a and b ones, the one with a

bigger index will ontain minfk; a+bg ones). Combining this with the indution

hypothesis we get p

i;t

� p

0

i;t

.

In the third ase, there are two sub-ases: either j � x

0

or j > x

0

. If j � x

0

,

then p

i;t

= 0 and hene p

i;t

� p

0

i;t

. The reason is that a one in eah of the

sequenes 

di

q

=ke;dj

q

=ke;x

0

;t�1

an freely move to any position j, i < j � x

0

.

The sub-ase j > x

0

is more tedious. We laim that

p

i;t

� maxf0; p

i;t�1

� (m� p

j;t�1

)g:

Indeed, if 

di

r

=ke;dj

r

=ke;x

0

;t�1

ontains a displaed one at position i and a dis-

plaed zero at position j, then 

di

r

=ke;dj

r

=ke;x

0

;t

ontains a zero at position i.

Therefore it ontributes to the derease of p

i

. So if p

i;t

> maxf0; p

i;t�1

�

(m � p

j;t�1

)g, then there are two di�erent pairs (i

r

; j

r

) and (i

r

0

; j

r

0

) suh that



di

r

=ke;dj

r

=ke;x

0

;t

ontains a displaed one at position i and 

di

r

0

=ke;dj

r

0

=ke;x

0

;t

ontains a displaed zero at position j. Then of ourse, d

di

r

=ke;dj

r

=ke;x

0
> t and

d

di

r

0

=ke;dj

r

0

=ke;x

0

> t, sine we have deteted displaed elements after step t on

positions, respetively, i and j. On the other hand, d

di

r

=ke;dj

r

0

=ke;x

0

� t, sine

in the worst ase the displaed zero and displaed one meet at layer t. So we

should have hosen a pair (i

r

; j

r

0

) instead of the �rst of (i

r

; j

r

) and (i

r

0

; j

r

0

).

On the other hand,

p

0

i;t

= maxf0; p

0

i;t�1

� (k � p

0

j;t�1

)g:

By the indution hypothesis, p

i;t�1

� p

0

i;t�1

and (m � p

j;t�1

) � (k � p

0

j;t�1

).

Combining all this we get p

i;t

� p

0

i;t

.

30



Proof of Property 2 of Claim 4.15. Let x

0

+ 1 � i � n.

In the seond ase, there are two sub-ases possible: either j > x

0

or j � x

0

.

In the �rst sub-ase k � p

0

i;t

= 0, sine the total number of zeroes in bukets j

and i is not greater than m, m � k, and the orresponding merging sub-network

moves all the zeroes to the jth buket. Hene Property 2 holds.

Now onsider the seond sub-ase. Note that

m� p

i;t

� (m� p

i;t�1

)� p

j;t�1

;

sine in at most p

j;t�1

ases 

di

r

=ke;dj

r

=ke;x

0

;t�1

ontains a one on position j.

Thus, for at most p

j;t�1

ases a zero at position i is exhanged with a one at

step t. On the other hand,

k � p

0

i;t

= maxf0; (k � p

0

i;t�1

) � p

0

j;t�1

g:

By the indution hypothesis, k� p

0

i;t�1

� m� p

i;t�1

and p

j;t�1

� p

0

j;t�1

. Hene

k � p

0

i;t

� m� p

i;t

.

In the third ase

m� p

i;t

= (m� p

i;t�1

) + (m� p

j;t�1

)

and

k � p

0

i;t

= minfk; (k � p

0

i;t�1

) + (k � p

0

j;t�1

)g:

So Claim 4.15 follows by the indution hypothesis.

Sine S

n

sorts eah sequene 

di

1

=ke;dj

1

=ke;x

0

;t

through 

di

m

=ke;dj

m

=ke;x

0

;t

, we

have p

i;t

= m, for i > x

0

and for t equal to the depth of S

n

. By Claim 4.15(b),

p

0

i;t

must be also equal m, for i > x

0

(i.e. the ith buket must not ontain

zeroes). Thus Lemma 4.14 follows from Claim 4.15(b) and its dual version for

ones (whih we skip here). 2

4.3 Constrution of orretion network N

n;k

In this setion we desribe the onstrution of the k-orretion network for

k-disturbed sequenes of length n > 256, where 3 � k �

1

2

n

1

3+log logn

. This

network will be denoted by N

n;k

= (n;D; f1; : : : ; ng; L). By R we denote the

set of registers of N

n;k

(i.e. f1; : : : ; ng).

The sequene L of layers of N

n;k

is divided into �ve parts alled phases.

(Thus L = P

1

P

2

P

3

P

4

P

5

, where P

i

denotes the ith phase.) Constrution of eah

phase is desribed in a separate subsetion.

We assume that n is divisible by n

2

, where n

2

is de�ned in the desription

of Phase 4 of the network. Here we only assume that n

2

is even and n

2

> 2k.

First we arrange the n registers of N

n;k

in a matrix M of size n

1

� n

2

,

where n

1

= n=n

2

(i.e. n

1

is the number of rows and n

2

is the number of

olumns) in the row-major order. The rows are numbered 1 through n

1

starting

at the top of the matrix and the olumns are numbered 1 through n

2

starting

at the leftmost olumn. So the ith row (denoted by ROW

i

) ontains registers

(i�1)�n

2

+1; : : : ; i�n

2

, the jth olumn (denoted by COL

j

) ontains the registers
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0’s
and
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zeroes
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ones

zeroes and/or ones row  

k

k

Figure 9: Con�guration of zeroes and ones in M after Phase 1

j + (k � 1) � n

2

, for 1 � k � n

1

. We use a onvention that for i < 1 or i > n

1

,

ROW

i

= ; and for j < 1 or j > n

2

, COL

i

= ;.

De�nition 4.16 For any zero-one on�guration  of R we de�ne y



as dx=n

1

e

where x = jfi j (i) = 0gj

Note that the rows 1; : : : ; y



� 1, are ontained in the zeroes area of  and

the rows y



+ 1; : : : ; n

1

are ontained in the ones area. ROW

y



may interset

both areas.

By S

n

we denote the Shimmler and Starke [15℄ network for input of size n.

S

n

is a network of depth 2dlogne � 1 similar to I

0

n

and I

1

n

that is a omplete

1-orretion network (i.e. it sorts arbitrary 1-disturbed sequene). By S

n;k

we

denote the extended k-merge version of S

n

.

4.3.1 Phase 1

Let L

0

be a f1; : : : ; n

2

g-restrition of the sequene of layers of S

dn

2

=ke;k

. We

de�ne layers P

1

as the union of f

i

-mappings of ROW

i

-restritions of L

0

, for

1 � i � n

1

and f

i

(x) = n

2

(i� 1) + x.

Lemma 4.17 Let  be any k-disturbed on�guration of R. Then for eah i,

1 � i � n

1

, the ROW

i

-restrition of P

1

() is sorted.

Proof. Follows from Lemma 4.14 and from the fat that eah ROW

i

-

restrition of  is also k-disturbed. 2
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   ...

   ...

   ...

   ...
   ...

k

k- 1

Figure 10: A single right luster in M and the ordering of registers inside the

luster

Corollary 4.18 Let  be any k-disturbed on�guration of R over f0; 1g. Then

the on�guration 

0

= P

1

() has following properties (see Fig. 9):

1. For eah i, 1 � i < y



, the sequene orresponding to ROW

i

-restrition of



0

is sorted and ontains all its ones in the last k positions.

2. For eah i, y



< i � n

1

, the sequene orresponding to ROW

i

-restrition

of 

0

is sorted and ontains all its zeroes in the �rst k positions.

3. The sequene orresponding to ROW

y



-restrition of 

0

is sorted.

4.3.2 Phase 2

The aim of Phases 2 and 3 is to move the displaed zeroes that are below the

row y



+ 1 to the leftmost olumn and the displaed ones that are above the

row y



� 1 to the rightmost olumn.

We partition the sub-matrix of k rightmost (respetively, leftmost) olumns

into squares of size k� k. For eah square ontained in rightmost (respetively,

leftmost) olumns, the subset onsisting of the �rst k� 1 olumns of the square

and the last olumn of next lower square (respetively �rst olumn of the square

and the k� 1 last olumns of the next lower square) is alled a luster (see Fig.

10).

During Phase 2 eah luster is sorted by a Bather sorting network for input

size k

2

.

Let us desribe this more formally. First we de�ne the inreasing fun-

tion f

j

suh that that the set f

j

(f1; : : : ; k

2

g) \ R is the jth left luster. If

f

j

(f1; : : : ; k

2

g) � R, then the register f

j

(i) is the ith register of the jth left

luster aording to their natural order.
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It is easy to hek that f

j

is de�ned as follows for x 2 f1; : : : ; k

2

g:

f

j

(x) =

�

(j � 1)kn

2

+ (x� 1)n

2

+ 1 if x � k;

j(k + i

x

� 1)n

2

+ (x� k) + 1� (i

x

� 1)(k � 1) if x > k;

where i

x

= d

x�k

k�1

e.

For eah j, 0 � j � dn

1

=ke, let CL

j

= f

j

(f1; : : : ; k

2

g) \ R denote the jth

left luster. Note that all the sets CL

j

are pairwise disjoint. We all a subset

TL

j

= f

j

(f1; : : : ; kg) \ R a tail of the jth left luster. Note that eah TL

j

is

ontained in COL

1

and intersets the rows (j � 1)k+ 1 through jk. For eah i,

1 � i � k, we all a subset RL

j;i

= f

j

(fk+(i�1)(k�1)+1; : : : ; k+i(k�1)g)\R

the ith row of the jth left luster. Note that eah RL

j;i

is ontained in ROW

jk+i

and intersets the olumns 2 trough k. If i < 1 or i > k, then we assume that

RL

j;i

= ;.

In a similar way, we de�ne the right lusters with the use of the following

inreasing funtions g

j

:

g

j

(x) = (j + 1)kn

2

� f

1

(k

2

� x + 1) + 1:

For eah j, 0 � j � dn

1

=ke, let CR

j

= g

j

(f1; : : : ; k

2

g) \ R denote the jth

right luster. All the sets CR

j

are pairwise disjoint.

We all a subset TR

j

= g

j

(fk

2

� k + 1; : : : ; k

2

g) \ R a tail of the jth right

luster. Eah TR

j

is ontained in COL

n

2

and intersets the rows jk+1 through

(j + 1)k. For eah i, 1 � i � k we all a subset RR

j;i

= g

j

(f(i � 1)(k �

1) + 1; : : : ; i(k � 1)g) \ R the ith row of the CR

j

. Eah RR

j;i

is ontained in

ROW

(j�1)k+i

and intersets the olumns n

2

� k through n

2

� 1. If i < 1 or

i > k, then we assume that RR

j;i

= ;.

Reall that BS

k

2

denote a Bather sorting network for the set of registers

f1; : : : ; k

2

g. Let L

0

be a sequene of layers of BS

k

2

. The sequene of layers

P

2

(i.e. of Phase 2) is the R-restrition of the union of f

j

-mappings and g

j

-

mappings of L

0

, for 0 � j � dn

1

=ke.

Let  be any k-disturbed on�guration of R over f0; 1g. The on�guration



0

= P

1

P

2

() has the following properties:

Fat 4.19 Let

U =

0

�

[

1�i<y



ROW

i

1

A

n

0

�

[

n

2

�k<j�n

2

COL

i

1

A

and

D =

0

�

[

y



<i�n

1

ROW

i

1

A

n

0

�

[

1�j�k

COL

i

1

A

The U-restrition of 

0

ontains only zeroes and the D-restrition of 

0

ontains

only ones.
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Proof. Fat 4.19 follows immediately from the Corollary 4.18 and from the

fat that eah omparator of the layers of P

2

is ontained either in the k leftmost

or in the k rightmost olumns of M . 2

Fat 4.20 Let

U

0

=

0

�

[

1�i<y



ROW

i

1

A

n COL

n

2

and

D

0

=

0

�

[

y



<i�n

1

ROW

i

1

A

n COL

1

The U

0

-restrition of 

0

ontains at most k� 1 ones and the D

0

-restrition of 

0

ontains at most k � 1 zeroes.

Proof. In on�guration P

1

() all the rows of M are sorted. The appliation

of P

2

does not derease the number of ones in the rightmost olumn and does

not derease the number of zeroes in the leftmost olumn. Hene at least one

of the ones that are above ROW

y



must remain in the rightmost olumn and

at least one of the zeroes that are below ROW

y



must remain in the leftmost

olumn. 2

Fat 4.21 If CR

j

is (entirely) above the row y



of M , then the CR

j

-restrition

of 

0

has all its ones in its tail TR

j

.

Proof. For eah luster CR

j

lying entirely above the row y



the CR

j

-

restrition of P

1

() ontains at most k ones. The CR

j

-restrition of P

1

() is

sorted by P

2

and TR

j

ontains the last k registers of CR

j

. 2

Fat 4.22 If TR

j

intersets the row y



of M , then CR

j

-restrition of 

0

has all

its ones in TR

j

[ RR

j;k

.

Proof. By Fat 4.20 and the fat that CR

j

nTR

j

is on the left side of COL

n

2

and above ROW

y



, there are at most k � 1 ones in (CR

j

n TR

j

)-restrition of



0

. Sine (CR

j

n TR

j

)-restrition of 

0

is sorted, all its ones must be in the last

row RR

j;k

. 2

Fat 4.23 If (j � 1)k + i = y



, for 1 � i � k, then the CR

j

-restrition of 

0

ontains ones only in RR

j;i

[RR

j;i�1

.

Proof. Fat 4.23 follows from the fat that there are at most k � 1 ones in

the registers above the row y



of M in the CR

j

-restrition of 

0

and that either

i = 1 or there is enough spae for them in RR

j;i�1

. 2

Fats 4.24,4.25,and 4.26 are analogous to Fats 4.21,4.22,and 4.23 respe-

tively and an be proved in a similar way.

Fat 4.24 If CL

j

is (entirely) below the row y



of M , then the CL

j

-restrition

of 

0

has all its zeroes in its tail TL

j

.
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Fat 4.25 If tail of TL

j

intersets the row y



of M , then CL

j

-restrition of 

0

has all its zeroes in TL

j

[RL

j;1

.

Fat 4.26 If jk + i = y



, 1 � i � k, then the CL

j

-restrition of 

0

ontains

zeroes only in the RL

j;i

[ RL

j;i+1

.

Corollary 4.27 Let  be any k-disturbed on�guration of R over f0; 1g. Let

j = dy



=ke and i = (y



mod k) + 1. The on�guration 

0

= P

1

P

2

() has the

following properties:

1. All displaed ones of 

0

are in COL

n

2

[ RR

j�1;k

[ RR

j;i

[ RR

j;i�1

. The

number of ones in RR

j�1;k

[ RR

j;i�1

is at most k � 1.

2. All displaed zeroes of 

0

are in COL

1

[ RL

j+1;1

[ RL

j;i

[ RL

j;i+1

. The

number of zeroes in RL

j+1;1

[ RL

j;i+1

is at most k � 1.

Proof. The property 1 follows from Fats 4.21, 4.22 and 4.23. Analogously

the property 2 follows from Fats 4.24, 4.25 and 4.26. 2

4.3.3 Phase 3

The aim of the third phase is to move all the displaed ones above ROW

y



into

ROW

y



�1

[ COL

n

2

and all the zeroes below ROW

y



into ROW

y



+1

[ COL

1

.

For this purpose we onsider the unions F

j;i

of the subsets (CL

j

nRL

j;1

) \

COL

i+1

with the singletons RL

j+1;1

\ COL

k�i+1

, for the displaed zeros in

the left lusters, and the unions G

j;i

of (CR

j

n RR

j;k

) \ COL

n

2

�k+i

with the

singletons RR

j�1;k

\ COL

n

2

�i

(see the middle part of Fig. 11).

Below we de�ne the funtions f

j;i

(respetively g

j;i

) suh that f

j;i

(s) (re-

spetively g

j;i

(s)) denotes the sth register of F

j;i

(respetively, of G

j;i

).

For 0 � j � dn

1

=ke, for 1 � i � k � 1 let the f

j;i

and g

j;i

be mapping

funtions over f1; : : : ; kg de�ned as follows.

f

j;i

(x) =

�

jkn

2

+ xn

2

+ 1 + i if x < k ;

jkn

2

+ xn

2

+ k � i+ 1 if x = k ;

g

j;i

(x) =

�

(j � 1)kn

2

+ (x� 1)n

2

� i if x = 1 ;

(j � 1)kn

2

+ (x� 1)n

2

� k + i if x > 1 :

Note that f

j;i

(f1; : : : ; k � 1g) \ R = (CL

j

n RL

j;1

) \ COL

i+1

and f

j;i

(fkg) \

R = RL

j+1;1

\COL

k�i+1

: Analogously, g

j;i

(f2; : : : ; kg)\R = (CR

j

nRR

j;k

) \

COL

n

2

�k+i

and g

j;i

(f1g) \R = RR

j�1;k

\ COL

n

2

�i

:

For 0 � j � dn=ke and 1 � i � k � 1, we have

F

j;i

= f

j;i

(f1; : : : ; kg) \ R

and

G

j;i

= g

j;i

(f1; : : : ; kg) \ R:

The third phase P

3

is de�ned as the R-restrition of the union of the f

j;i

-

mappings of INS

0

k

and the g

j;i

-mappings of INS

1

k

, for all j, 0 � j � dn=ke and

for all i, 1 � i � k � 1.
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Claim 4.28 Let  be a k-disturbed on�guration of R over f0; 1g. Let j =

dy



=ke. Let 

0

= P

1

P

2

(). Then

� The G

j;i

-restrition of 

0

has at most one one above ROW

y



and the se-

quene orresponding to G

j;i

-restrition of 

0

is either sorted or di�ers

from the sorted sequene only at the �rst position.

� The F

j;i

-restrition of 

0

has at most one zero below ROW

y



and the se-

quene orresponding to F

j;i

-restrition of 

0

is either sorted or di�ers from

the sorted sequene only at the last position.

Proof. The laim follows from de�nitions of F

j;i

and G

j;i

. To see the

property forG

j;i

, note that if the �rst register of the G

j;i

and any of its remaining

registers both ontain the ones, then the sum of the numbers of ones in the

orresponding rows of the right lusters must be greater than k � 1. By Fat

4.20, it is possible only if the seond register is below ROW

y



�1

. The part of

the sequene in the registers g

j;i

(2) through g

j;i

(k) is sorted, sine the luster

CR

j

is sorted. See Fig. 11. 2

Lemma 4.29 Let  be a k-disturbed on�guration of R over f0; 1g. Let 

0

=

P

1

P

2

P

3

(). Then 

0

has following properties:

1. All registers that are above ROW

y



�1

and on the left side of COL

n

2

on-

tain only zeroes.

2. All registers of ROW

y



�1

on the left side of COL

n

2

�k+1

ontain only

zeroes.

3. All registers below ROW

y



+1

and on the right side of COL

1

ontain only

ones.

4. All registers of ROW

y



+1

on the right side of COL

k

ontain only ones.

Proof. We prove only the Properties 1 and 2. The Properties 3 and 4 are

dual and an be proved in an analogous way.

By Fat 4.19, all the ones above ROW

y



in P

1

P

2

() are in the k right-

most olumns. By Claim 4.28 the sequene orresponding to G

j;i

-restrition of

P

1

P

2

() has at most one one above ROW

y



and has the struture that an be

sorted by INS

1

k

. Property 1 follows from the fat that eah G

j;i

-restrition of

P

1

P

2

() is sorted by the orresponding g

j;i

-mapping of INS

1

k

.

By the Fat 4.19, the part of ROW

y



�1

on the left side of COL

n

2

�k+1

ontains no ones in P

1

P

2

(). Property 2 follows from the de�nition of P

3

: All

the omparators of P

3

with the seond registers in the ROW

y



�1

on the left

side of COL

n

2

�k+1

have their �rst registers in the leftmost k olumns above

ROW

y



. By Fat 4.19, these registers must ontain zeroes in P

1

P

2

(). Thus no

suh omparator an insert a one into ROW

y



�1

. 2

Fig. 11 illustrates what happens during Phase 3 in the two right lusters

that interset the row y



. The leftmost part displays the plaement of the ones
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y
c

row

upper cluster

lower  cluster

1’s

1’s 1’s

1’s

1’s

1’s ...

...

Figure 11: The on�guration transformation during the phase 3

in the last row of the upper luster and in the row of the lower luster that is

just above ROW

y



. The rightmost part shows the plaement of these ones after

the appliation of P

3

. The middle part shows how the registers from the last

row of the upper luster are grouped together in the phase P

3

with the olumns

of the next lower luster.

4.3.4 Phase 4

Phase 4 is the ore part of the onstrution. It demonstrates the tehnique

of embedding the networks I

1

n

1

and I

0

n

1

in the matrix of registers M of size

n

1

�n

2

in suh a way that after appliation of P

4

all the displaed elements are

onentrated in at most three neighboring rows of M .

Trees of olumns. Below we de�ne the trees that will be used in desription

of the onstrution of P

4

.

De�nition 4.30 Let T

d

denote the tree with the edges labeled by positive inte-

gers, de�ned reursively as follows:

1. T

0

ontains only a single isolated vertex (a root of T

0

).

2. For d > 0, T

d

is a tree onstruted from two opies of T

0

d�1

(where T

0

d�1

is

reated from T

d�1

by inreasing the labels of all edges by one) by onneting

the root of the �rst T

0

d�1

as the new hild of the root of the seond T

0

d�1

with a new edge labeled 1. The root of the seond T

0

d�1

is a root of T

d

.

By a level of a node in T

d

we denote its distane from the root (i.e. the level

of the root is 0, the level of any hild of the root is 1, and so on). By T

d;t

we
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T
d
,

T
d
,

+1d
T

1

Figure 12: Constrution of T

d+1

from T

0

d

denote the subtree of T

d

onsisting of the nodes with the levels less or equal to

t. By �

d;t

we denote the number of verties of T

d;t

.

Note that T

d

is isomorphi with a binomial tree. Sine the binomial tree has

�

d

i

�

verties on the ith level, we have �

d;t

=

P

t

i=0

�

d

i

�

.

Let T = T

2dlog ne�1;dlog ke

. Let � = �

2dlog ne�1;dlog ke

. We an now de�ne the

value of n

2

(and thus of n

1

): n

2

= 2�.

Constrution of P

4

. We use the tree T to desribe the onstrution of P

4

.

Let V be a set of verties of T and let v

0

2 V be a root of T .

We de�ne two sets of olumns:

CSET

1

= fCOL

i

j 2 � i � n

2

=2g

and

CSET

0

= fCOL

i

j n

2

=2 < i � n

2

� 1g:

By Lemma 4.29 and by the fat that n

2

> 2k the following holds.

Claim 4.31 Let  be a k-disturbed on�guration over f0; 1g. Let 

0

= P

1

P

2

P

3

().

If COL

i

2 CSET

1

, then COL

i

-restrition of 

0

has only zeroes above ROW

y



.

If COL

i

2 CSET

0

, then COL

i

-restrition of 

0

has only ones below ROW

y



.

Let

ol

0

: V ! fCOL

1

g [ CSET

0

be any bijetion suh that ol

0

(v

0

) = COL

1

. Symmetrially, let

ol

1

: V ! fCOL

n

2

g [ CSET

1

be any bijetion suh that ol

1

(v

0

) = COL

n

2

. Let ol

�1

i

denote the reverse

funtion of ol

i

, for i 2 f0; 1g.

The phase P

4

= (P

4;1

; : : : ; P

4;4dlog ne�2

) is de�ned as follows:

� The olumns fCOL

n

2

g[CSET

1

of M ontain the embedding of I

1

n

1

. The

omparators of P

4

in this part of M are de�ned as follows:
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{ For eah l, 1 � l � 2dlogne�1, for eah olumn COL

i

2 fCOL

n

2

g[

CSET

1

suh that ol

�1

1

(COL

i

) = v

0

or the vertex ol

�1

1

(COL

i

) is

onneted with its parent by an edge with a label less than l, there is

a omparator (r

1

; r

2

) in P

4;2l�1

if and only if fr

1

g = ROW

j

1

\COL

i

and fr

2

g = ROW

j

2

\ COL

i

and the lth layer of I

1

n

1

ontains the

omparator (j

1

; j

2

).

{ For eah l, 1 � l � 2dlogne�1, for eah olumn COL

i

2 fCOL

n

2

g[

CSET

1

suh that the vertex v

i

= ol

�1

1

(COL

i

) is onneted with its

hild v

0

i

by an edge with a label l, there is a omparator (r

1

; r

2

) in P

4;2l

if and only if fr

1

g = ROW

j

1

\ COL

i

and fr

2

g = ROW

j

2

\ ol

1

(v

0

i

),

and the lth layer of I

1

n

1

ontains the omparator (j

1

; j

2

).

� Analogously we de�ne the embedding of I

0

n

1

in the olumns fCOL

1

g [

CSET

0

.

The idea behind the onstrution is the following one: Consider the displaed

ones in COL

n

2

. We want to move them down to the row at least y



� 1.

Initially, COL

n

2

ontains at most k ones above ROW

y



(displaed ones) and

the olumns from CSET

1

ontain no ones above ROW

y



(we say they are lean).

Any displaed one falls down inside its olumn through the omparators in the

odd layers of P

4

until it is bloked by another displaed one. In that ase,

the orresponding omparator in the next even layer of P

4

moves the bloked

one to the register in some lean olumn to the same row that it would have

reahed if it had not been bloked. Note the lean olumn 

0

that an reeive

displaed ones from a olumn  in the layer P

4;2l

orresponds to a hild of the

vertex orresponding to . On the other hand,  an move at most half of its

displaed ones to 

0

. That means that the olumns orresponding to the verties

on the level dlog ke will reeive at most one displaed one and will never have

ollisions between displaed elements. That is why we ould lip T

2dlogne�1

to

T

2dlogne�1;dlog ke

in our onstrution.

Lemma 4.32 Let  be any k-disturbed on�guration of R over f0; 1g. Let 

0

=

P

1

P

2

P

3

P

4

(). Then 

0

has only zeroes above the ROW

y



�1

and only ones below

the ROW

y



+1

.

Proof. We prove only that 

0

has no ones above ROW

y



�1

. The proof that



0

has no zeroes below ROW

y



+1

is analogous.

Let X

0

= COL

1

[

S

COL

i

2CSET

0

COL

i

. Let X

1

= COL

n

2

[

S

COL

i

2CSET

1

COL

i

.

Note that eah omparator of phase P

4

has both its registers either in X

0

or in

X

1

.

Sine X

0

-restrition of the on�guration 

00

= P

1

P

2

P

3

() has no ones above

ROW

y



�1

and P

4

is a sequene of standard layers, there are also no ones above

ROW

y



�1

in the X

0

-restrition of 

0

.

Thus we have to show only that all the ones that are above the ROW

y



�1

in the X

1

-restrition of 

00

will be moved out of this region by P

4

.
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Claim 4.33 Let COL

i

be a olumn from CSET

1

. Let t be the label of the edge

onneting ol

�1

1

(COL

i

) with its parent. Let 0 � t

0

< 2t. Then there are no

ones above ROW

y



in the COL

i

restrition of P

4;1

: : : P

4;t

0

(

00

)

Proof of the laim. By Claim 4.31, all olumns of CSET

1

have only zeroes

above ROW

y



in on�guration 

00

. The only olumn in the X

1

-restrition of 

00

that may have ones above ROW

y



is COL

n

2

. P

4;2t

is the �rst (and the only)

layer of P

4

that has omparators with the seond register in COL

i

and the �rst

register from outside COL

i

(i.e. the only layer that an inrease the number of

ones in COL

i

).

Claim 4.34 Let COL

i

be a olumn from CSET

1

[ fCOL

n

2

g. Let l be the

level of ol

�1

1

(COL

i

) in T . Let m

t

be the number of ones above ROW

y



in the

COL

i

-restrition of the on�guration P

4;1

: : : P

4;t

(

00

). Then maxfm

t

j 0 � t �

4dlogne � 2g � 2

�l

k.

Proof of the laim. By indution on l. If l = 0, then COL

i

= COL

n

2

and the number of ones in this olumn above ROW

y



is never greater than

k = 2

�0

k. If l > 0, then the number of ones above ROW

y



in the olumn

COL

j

suh that ol

�1

1

(COL

j

) is the parent of ol

�1

1

(COL

i

), is never greater

than 2

�(l�1)

k. There is only one layer P

4;t

0

in the phase P

4

that ontains

omparators with the �rst register in COL

j

and the seond register in COL

i

.

All the remaining layers of P

4

ontain omparators with either both registers

in COL

i

or with the seond register outside COL

i

. Before appliation of P

4;t

0

there are no ones above ROW

y



in COL

i

. The omparator (r

1

; r

2

) of P

4;t

0

an

move a one from COL

j

to COL

i

if and only if the omparator (r

1

; r

0

2

) from the

phase P

4;t

0

�1

with both registers in COL

j

had ones in its both registers. There

are at most 2

�(l�1)

k=2 = 2

�l

k suh omparators.

Claim 4.35 Letm be the number of ones above ROW

y



in the COL

n

2

-restrition

of 

00

. (Note that m � k.) Let s

1

; : : : ; s

m

be the inreasing sequene of all their

row positions. Let 

1;0

; : : : ; 

m;0

be a sequene of on�gurations of f1; : : : ; n

1

g

over f0; 1g, suh that



i;0

(j) =

�

1 if j = s

i

or j � y



0 otherwise.

Let 

i;t

be a result of appliation of the subsequene of t initial layers of I

1

n

to

the on�guration 

i;0

. Let s

i;t

be the (unique) number suh that s

i;t

< y



and



i;t

(s

i;t

) = 1. Let 

00

t

= P

4;1

: : : P

4;2t

(

00

). Let m

t

be a number of rows above

ROW

y



that ontain ones in the X

1

-restrition of 

00

t

, and let s

00

1;t

; : : : ; s

00

m

t

;t

be

the inreasing sequene of their indexes. Then

fs

1;t

; : : : ; s

m;t

g = fs

00

1;t

; : : : ; s

00

m

t

;t

g:

Proof of the laim. By indution on t. The ase for t

0

follows from

the fats that eah s

i;0

= s

i

and all the ones above ROW

y



in X

1

-restrition
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of 

00

are in COL

n

2

. Let t > 0. We have to show that if fs

1;t

; : : : ; s

m;t

g =

fs

00

1;t

; : : : ; s

00

m

t

;t

g; then fs

1;t+1

; : : : ; s

m;t+1

g = fs

00

1;t+1

; : : : ; s

00

m

t+1

;t+1

g. Note that

either s

i;t+1

= s

i;t

or there is an omparator (s

i;t

; s

i;t+1

) in the tth layer of I

1

n

1

and s

i;t+1

< y



. If there are any ones above ROW

y



in the COL

i

-restrition of



00

t

, then ol

�1

1

(COL

i

) either is a root of T or must be onneted with its parent

by an edge with the label not greater than t. By the de�nition of P

4

, either:

� there are omparators (r

1

; r

2

) in P

4;2t+1

and (r

1

; r

0

2

) in P

4;2t+2

suh that

{ fr

1

g = COL

i

\ ROW

s

i;t

and

{ fr

2

g = COL

i

\ ROW

s

i;t+1

and

{ fr

0

2

g = COL

j

\ ROW

s

i;t+1

,

where ol

�1

1

(COL

j

) is a hild of ol

�1

1

(COL

i

) onneted with it by an

edge with the label t + 1, or

� there is only the omparator (r

1

; r

2

) in P

4;2t+1

and the level of ol

�1

1

(COL

i

)

in T is dlog ke.

By the Claim 4.34, in the seond ase there is at most single one above

ROW

y



in COL

i

and it will be shifted by the omparator (r

1

; r

2

) from the

ROW

s

i;t

to the ROW

s

i;t+1

.

By the Claim 4.33, in the �rst ase the one from r

1

is shifted to r

2

or to r

0

2

,

sine P

4;2t+1

(

00

t

)(r

0

2

) = 0.

Lemma 4.32 follows from the fat that by Lemma 4.12 fs

1;t

; : : : ; s

m;t

g �

fy



� 1g, for t = 2dlogne � 1. 2

4.3.5 Phase 5

By Lemma 4.32, after appliation of the phases P

1

P

2

P

3

P

4

to a k-disturbed zero-

one on�guration  there are only zeroes above ROW

y



�1

and only ones below

ROW

y



+1

. Let 

0

= P

1

P

2

P

3

P

4

(). (ROW

y



�1

[ ROW

y



)-restrition of 

0

and

(ROW

y



[ ROW

y



+1

)-restrition of 

0

are k-disturbed, sine 

0

is k-disturbed.

The last phase P

5

is de�ned as follows:

P

5

= P

0

5

P

00

5

P

000

5

;

where P

0

5

, P

00

5

and P

000

5

are de�ned below.

Let L be a f1; : : : ; 2n

2

g-restrition of the subsequene of layers of S

d2n

2

=ke;k

.

(Reall that this is the extended k-merge version of the Shimmler Starke 1-

orretion network.) Let P

0

5

be the R-restrition of a union of the f

i

-mappings

of L, where f

i

(x) = 2n

2

i+ x.

Let M be a sequene of layers of BM

2n

2

(the Bather merging networks

for two sorted sequenes of length 2n

2

stored in the registers f1; : : : ; 2n

2

g and

f2n

2

+ 1; : : : ; 4n

2

g). Let P

00

5

(respetively P

000

5

) be the R-restrition of a union

of the g

i

-mappings (respetively g

0

i

-mappings) of M , where g

i

(x) = 4n

2

i + x

(respetively g

0

i

(x) = g

i

(x) + 2n

2

).

The following lemma states that N

n;k

is a k-orretion network.
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Lemma 4.36 Let  be any k-disturbed on�guration of R over f0; 1g. Then



0

= P

1

P

2

P

3

P

4

P

5

() is sorted.

Proof. The on�guration 

00

= P

1

P

2

P

3

P

4

P

0

5

() has following properties:

� for i � 1, the (ROW

2i�1

[ROW

2i

)-restrition of 

00

is sorted (by Lemma

4.14).

� Let i

0

= d(y



+ 1)=2e. Then 2(i

0

� 2) + 1 � y



� 1, so 

00

has only zeroes

above ROW

2(i

0

�2)+1

. (Sine, by Lemma 4.32, all displaed elements of 

00

are ontained in ROW

y



�1

[ROW

y



[ROW

y



+1

.) Similarly, 2i

0

� y



+1,

so 

00

has only ones below ROW

2i

0

.

It is enough to sort the fragment of 

00

ontained in the rows 2(i

0

�2)+1 through

2i

0

. Both (ROW

2i

0

�3

[ROW

2i

0

�2

)-restrition of 

00

and (ROW

2i

0

�1

[ROW

2i

0

)-

restrition of 

00

are sorted. Thus all we have to do is merge the subsequenes

ontained in ROW

2i

0

�3

[ ROW

2i

0

�2

and ROW

2i

0

�1

[ ROW

2i

0

. We do not

know the parity of i

0

. If i

0

is even, then already P

00

5

(

00

) is sorted. Otherwise

P

00

5

(

00

) = 

00

and P

000

5

(P

00

5

(

00

)) is sorted. 2

4.3.6 Estimation of the depth of N

n;k

For any positive integer i, let m

i

denote the depth of the Bather merging

network BM

i

that merges two sequenes of length i eah, and let d

i

denote

the depth of the Bather sorting network BS

i

for input of size i. Then m

i

=

1 + dlog ie and d

i

=

m

i

dlog ie

2

.

The depth p

1

of the phase P

1

is equal to the depth of S

dn

2

=ke;k

. Thus

p

1

= d

k

+m

k

(2dlogdn

2

=kee � 1) = m

k

�

dlog ke

2

+ 2dlogdn

2

=kee � 1

�

� m

k

�

(log k)=2 + 2 log(n

2

=k) +

3

2

�

= m

k

�

2 logn

2

�

3

2

log k +

3

2

�

� 2 logn

2

(1 + dlog ke)�

3

2

log k �

3

2

log

2

k +

3

2

+

3

2

dlog ke

� 2 logn

2

(1 + dlog ke) �

3

2

log

2

k + 3:

Analogously the depth p

0

5

of P

0

5

(the depth of S

d2n

2

=ke;k

) is not greater than

2 log(2n

2

)(1 + dlog ke) �

3

2

log

2

k + 3:

The depth p

00

5

of P

00

5

(and of P

000

5

) is equal to the depth of BM

2n

2

, so p

00

5

=

1 + dlog(2n

2

)e: Thus the depth of phase P

5

is equal to

p

5

= p

0

5

+ 2p

00

5

� 2 log(2n

2

)(1 + dlog ke) �

3

2

log

2

k + 3 + 2 + 2dlog(2n

2

)e
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� 2 log(2n

2

)(2 + dlog ke) �

3

2

log

2

k + 7:

The depth p

2

of P

2

is equal to the depth of BS

k

2

:

p

2

= d

k

2

= m

k

2

dlog(k

2

)e

2

� 2(1 + log k)

2

= 2 log

2

k + 4 log k + 2:

The depth p

3

of the phase P

3

is equal to the depth of INS

1

k

(or INS

0

k

):

p

3

= dlog ke � log k + 1:

The depth p

4

of P

4

is twie the depth of I

1

n

1

(or I

0

n

1

).

p

4

= 4dlog(n=n

2

)e � 2 � 4 logn� 4 logn

2

+ 2:

The depth of P an be estimated as follows:

p = p

1

+ p

2

+ p

3

+ p

4

+ p

5

�

�

2 logn

2

(1 + dlog ke)�

3

2

log

2

k + 3

�

+(2 log

2

k + 4 log k + 2) + (log k + 1) + (4 logn� 4 logn

2

+ 2)

+

�

2 log(2n

2

)(2 + dlog ke) �

3

2

log

2

k + 7

�

Finally

p � 4 logn+ 4 logn

2

�

1

2

+ dlog ke

�

� log

2

k + 7 log k + 21 (2)

We have to estimate n

2

. Reall that n

2

(the number of olumns of the matrix

of registers M) is twie the number of verties of the tree T . On the other hand

T is a subtree of the binomial tree T

2dlogne�1

, onsisting of the verties on the

levels not greater than dlog ke. The number of the verties on the ith level of

T

m

is

�

m

i

�

. Thus

n

2

= 2 �

dlog ke

X

i=0

�

2dlogne � 1

i

�

(3)

Lemma 4.37 (due to Marek Piotr�ow) If n � 256 and 3 � k �

1

2

n

1

3+log logn

,

then logn

2

� dlog ke(log logn + 2) and n

2

� n=k.

Proof. By an easy indution one an prove that

j�1

X

i=0

�

m

i

�

�

�

m

j

�

(4)

for m � 2 and j �

m+1

3

. In our ase

dlog ke �

�

logn

3 + log logn

�

�

2

3

dlogne �

(2dlogne � 1) + 1

3

:
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Therefore, we an apply the inequality (4) to the sum (3) without the last term

and obtain

n

2

� 4

�

2dlogne � 1

dlog ke

�

: (5)

By Stirling formula, we have the following well-known upper bound:

�

m

j

�

�

1

p

2�j

�

me

j

�

j

:

Applying this to (5) and taking logarithm of both sides we get

logn

2

�

�

3

2

�

1

2

log(�dlog ke)

�

+ dlog ke

�

log logn + log

e(2 + 1= logn)

dlog ke

�

Due to our assumption about k and n, dlog ke � 2 and logn � 8, and therefore

the expression in the �rst parenthesis is bounded by 0:2 and

log

e(2 + 1= logn)

dlog ke

� 1:6:

The �rst part of lemma follows. The seond one is a simple onsequene of the

�rst part and the upper bound on k:

dlog ke � 1 + log k �

logn

3 + log logn

and

logn

2

� dlog ke(log logn+ 3)� log k � log

n

k

:

2

Lemma 4.37 shows that the onstrution is orret: the required number of

olumns does not exeed the total number of registers and there are at least k

rows.

If n � 256 and 3 � k �

1

2

n

1

3+log logn

, then by Lemma 4.37 and by the

estimation (2) we have:

p � 4 logn+ 4dlog ke(log logn+ 2)

�

1

2

+ dlog ke

�

� log

2

k + 7 log k + 21

� 4 logn + 4dlog ke

2

log logn + 2dlog ke log logn+ 7 log

2

k + 11 log k + 33

Thus

p = 4 logn+O(log

2

k log logn):
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5 Periodi orretion networks

In this setion we onsider the problem of sorting k-disturbed sequenes with

the periodi networks of a onstant depth. We start in Setion 5.1 with a

presentation of a simple periodi 1-orretion network of depth 4 that works in

O(log n) iterations, and then in Setion 5.2 we present a periodi k-orretion

network of depth 8 that works in O(k + logn) iterations.

5.1 A simple periodi 1-orretion network

In this setion we de�ne a simple 1-orretion network H

l

on 2

l

� 2l registers

f0; : : : ; 2

l

� 2l � 1g.

We start with a de�nition of two auxiliary networks G

l

and G

0

l

. Let N

l

=

2

l

(l + 1).

De�nition 5.1 Let l be a positive integer. Let

g

l

: f0; : : : ; lg � f0; : : : ; 2

l

� 1g ! f0; : : : ; N

l

� 1g

be a bijetion de�ned as follows:

g

l

(x; y) = x + (l + 1)y:

We assume that the registers are arranged in a matrix, where the register

g

l

(x; y) is plaed in olumn x and row y. (The rows and olumns are numbered

from zero.)

De�nition 5.2 For a positive integer l, we de�ne a network G

l

= CN(N

l

; 4; R; L),

where R = f0; : : : ; N

l

� 1g, L = (L

0

; L

1

; L

2

; L

3

), and (see Fig. 13):

� L

0

= f(g

l

(x; y); g

l

(x + 1; y + 2

l�x�1

)) j x is even; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� L

1

= f(g

l

(x; y); g

l

(x + 1; y)) j x is even; 0 � x < l; 0 � y < 2

l

g;

� L

2

= f(g

l

(x; y); g

l

(x + 1; y + 2

l�x�1

)) j x is odd; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� L

3

= f(g

l

(x; y); g

l

(x + 1; y)) j x is odd; 0 � x < l; 0 � y < 2

l

g:

We de�ne a network G

0

l

that is symmetrial to G

l

:

De�nition 5.3 For a positive integer l and R = f0; : : : ; N

l

� 1g we de�ne a

network

G

0

l

= CN(N

l

; 4; R; (L

0

0

; L

0

1

; L

0

2

; L

0

3

));

suh that for eah i, 0 � i � 3,

L

0

i

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 L

i

g;

where L

i

is the ith layer of the network G

l

.
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0L L 1 L 2 L 3

Figure 13: The layers of G

3

.

We arrange the registers of H

l

into a matrix that ontains in olumn x and

row y the register h

l

(x; y), where the funtion h

l

is de�ned as follows.

De�nition 5.4 Let l be a positive integer. Let

h

l

: f0; : : : ; 2l� 1g � f0; : : : ; 2

l

� 1g ! f0; : : : ; 2

l

� 2l� 1g

be a bijetion de�ned as follows:

h

l

(x; y) = x + 2ly:

Below we de�ne two funtions m

l

and m

0

l

that are used for mapping the

layers of respetively G

l

and G

0

l

into H

l

.

De�nition 5.5 Let

m

l

: f0; : : : ; N

l

� 1g ! h

l

(fl� 1; : : : ; 2l � 1g � f0; : : : ; 2

l

� 1g)

and

m

0

l

: f0; : : : ; N

l

� 1g ! h

l

(f0; : : : ; lg � f0; : : : ; 2

l

� 1g)

(where h

l

(X � Y ) = fh

l

(x; y) j x 2 X; y 2 Y g) be two mapping funtions

de�ned as follows. For eah 0 � x � l, for eah 0 � y < 2

l

,

m

l

(g

l

(x; y)) = h

l

(x + l � 1; y)

and

m

0

l

(g

l

(x; y)) = h

l

(x; y):

The network H

l

is de�ned as follows.

De�nition 5.6 For a positive integer l we de�ne the network H

l

= CN(2

l

�

2l; 4; R; L

00

) (see Fig. 14), where R = f0; : : : ; 2

l

� 2l� 1g, L

00

= (L

00

0

; L

00

1

; L

00

2

; L

00

3

),

and:
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Figure 14: The network H

3

. The layers L

00

0

and L

00

1

are drawn with the solid

lines and the layers L

00

2

and L

00

3

are drawn with the dashed lines.

� For eah t 2 f0; 1; 2; 3g, the layer L

00

t

ontains the union of the m

l

-mapping

of L

t

and the m

0

l

-mapping of L

0

t

, where L

t

and L

0

t

are the tth layers of G

l

and G

0

l

respetively, and

� the layer L

00

1+2(l mod 2)

ontains additionally the set of omparators f(h

l

(2l�

1; y); h

l

(0; y + 1)) j 0 � y < 2

l

� 1g, and

� there are no other omparators in H

l

.

Note that the orresponding mappings of L

t

and L

0

t

, for t 2 f0; 1g are not

disjoint. (The two middle olumns of H

l

are in the images of both mappings.)

However, the de�nition is orret beause the omparators from the two map-

pings either are idential or ontain no ommon registers.

Note that the layers of H

l

are symmetrial (i.e. there is a omparator (i; j)

in the layer L

00

t

if and only if there is a omparator (n� 1� j; n� 1� i) in the

same layer, where n = 2

l

� 2l is the number of registers).

Lemma 5.7 There exist a onstant d suh that for any l > 0, the network H

l

sorts any 1-disturbed on�guration in dl iterations.

Proof. Let  be a 1-disturbed zero-one on�guration on the registers of H

l

.

Let z denote the number of zeroes in . Let y

0



= b

z

2l

. That is, y

0



is the index of

the �rst row of H

l

that intersets the ones area. (The rows are numbered from

zero.) Let r

t

be the �rst register ontaining a one after t steps of omputation of

H

l

(i.e. after appliation of the sequene of layers (L

00

0

: : : L

00

3

)

bt=4

L

00

0

: : : L

00

t mod 4

).

Let t

0

be the minimal t suh that either r

t

� h

l

(0; y

0



) (i.e. the displaed 1 is

already in the row y

0



) or r

t

= h

l

(l � 1; y) for some y (i.e. r

t

is in the olumn

l � 1).
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Claim 5.8 t

0

� 4l.

The laim follows from the fat that there is at most one one above the row

y

0



, and as long as it is above the row y

0



it is shifted every two steps to the next

olumn on the right side or to the olumn 0 if it is in the olumn 2l � 1. (We

say that the 1 is moved to the next (modulo 2l) olumn on the right side.)

Let t

00

be a minimal step number t suh that r

t

� h

l

(0; y

0



) � 1.

Claim 5.9 t

00

� t

0

+ 2l.

If r

t

0

� h

l

(0; y

0



), then t

00

� t

0

and the laim holds. Otherwise, assume that

r

t

0

is in the olumn l�1 above the row y

0



. The �rst layer that an move a single

displaed one from the register r

t

0

= h

l

(l � 1; y) is L

00

0

or L

00

1

. If the distane

between the row y and the row y

0



is greater than 2

l�1

, then the layer L

00

0

moves

the displaed one to the row y + 2

l�1

in the olumn l, otherwise L

00

1

moves the

displaed one to the register h

l

(l; y). In either ase the distane between the

displaed element and the row y

0



is not greater than 2

l�1

. In a similar way,

it an be shown by indution that after the step t

0

+ 2t, where 1 � t � l, the

displaed one is in the olumn l � 1 + t and the distane between its row and

the row y

0



is at most 2

l�t

.

Claim 5.10 After 6l steps the on�guration is at most 2l + 2-dirty.

The laim follows from the fat that the network is symmetrial, and after

6l steps the index of the �rst register that ontains a one is at least h

l

(0; y

0



)� 1

and the index of the last register that ontains a zero is at most h

l

(2l�1; y

0



)+1.

Now the lemma follows diretly from Claim 5.10 and Lemma 3.4. 2

For an arbitrary n > 0, we an onstrut a 1-orretion periodi network

of depth 4 for input sequenes of size n as the f0; : : : ; n � 1g restrition of

the network H

l

0

, where l

0

is the minimal l suh that 2

l

� 2l � n. Note that

l

0

2 O(log n).

It is not lear how does the networkH

l

work for the k-disturbed on�guration

for the larger values of k. It an be shown easily, by onsidering eah displaed

element separately that the upper bound on the time needed for sorting suh a

on�guration is O(kl).

In the next setion we onstrut a periodi network of a onstant depth that

sorts any k-disturbed on�guration in O(log n + k) iterations.

5.2 Periodi k-orretion network

The main problem with the k-disturbed sequenes in the network H

l

, for greater

values k, is that a displaed one that starts falling in the olumn l � 1 and is

bloked by the other displaed one, may need a full rotation through all the

olumns to get another hane of falling down to the proper row. In this setion

we overome to some extend this problem.

The layers B

l;i

and B

0

l;i

, de�ned below, will be used in the desription of the

k-orretion network.
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B
3,0

B
3,1

B’
3,0

B’
3,1

Figure 15: The layers B

3;i

and B

0

3;i

.

De�nition 5.11 For l > 0, we de�ne four layers B

l;0

, B

l;1

, B

0

l;0

, B

0

l;1

on the

registers f0; : : : ; N

l

� 1g as follows (see Fig. 15):

� B

l;0

= f(g

l

(x + 1; y); g

l

(x; y + 2

l�x�1

)) j x is even; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� B

l;1

= f(g

l

(x + 1; y); g

l

(x; y + 2

l�x�1

)) j x is odd; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� B

0

l;0

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 B

l;0

g;

� B

0

l;1

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 B

l;1

g:

De�nition 5.12 For l > 0 and the register sequene R = f0; : : : ; N

l

� 1g we

de�ne F

l

and F

0

l

as follows (see Fig. 16):

� F

l

= CN(N

l

; 4; R; (L

1

; B

l;0

; L

3

; B

l;1

)), where L

1

and L

3

are the layers

introdued in De�nition 5.2.

� F

0

l

= CN(N

l

; 4; R; (L

0

1

; B

0

l;0

; L

0

3

; B

0

l;1

)), where L

0

1

and L

0

3

are layers intro-

dued in De�nition 5.3.

Now we an desribe our main network. Let l > 1 and w

0

> 1 be integers.

Let w = 2(l+ 1 +w

0

), h = 2

l

and n = wh. Let R = f0; : : : ; n� 1g. We de�ne a

funtion

r : f0; : : : ; w � 1g � f0; : : : ; h� 1g ! f0; : : : ; n� 1g

by

r(x; y) = x + wy:

We arrange the registers in a matrix where the register r(x; y) is plaed in

olumn x and row y.
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F
3

F’
3

Figure 16: The networks F

3

and F

0

3

: the layers B

3;0

, B

3;1

of F

3

and the layers

B

0

3;0

, B

0

3;1

of F

0

3

are drawn with dashed lines.

We de�ne the following two mapping funtions m and m

0

that are used for

plaing the layers of F

l

and F

0

l

on the registers of our network. For 0 � x � l,

0 � y � 2

l

� 1,

m(g

l

(x; y)) = r(w=2 + x; y)

and

m

0

(g

l

(x; y)) = r(w=2 � l � 1 + x; y);

where g

l

is the funtion de�ned in De�nition 5.1.

Below we de�ne our main network P

l;w

0

. For this purpose, we desribe �rst

auxiliary sequenes of layers Y = (Y

0

; Y

1

; Y

2

; Y

3

) and J = (J

0

; J

1

; J

2

; J

3

).

Let (A

0

; A

1

; A

2

; A

3

) denote the sequene of layers of F

l

and (A

0

0

; A

0

1

; A

0

2

; A

0

3

)

denote the sequene of layers of F

0

l

. Let Y = (Y

0

; Y

1

; Y

2

; Y

3

) be a sequene of

layers, suh that Y

t

is the union of the m-mapping of A

t

and the m

0

-mapping

of A

0

t

(see Fig. 17). Note that in the matrix presentation (i.e. when the

register r(x; y) is plaed in olumn x and row y) Y ontains the mappings of

the layers of F

0

l

and F

l

, where the mapping of F

0

l

is plaed at the olumns

w=2� l� 1; : : : ; w=2� 1 (where the olumns are numbered from zero to w� 1)

and the mapping of F

l

is plaed at the olumns w=2; : : : ; w=2 + l. Note that the

layer Y

0

ontains only omparators of the form (r(x; y); r(x + 1; y)) while the

layer Y

1

ontains omparators of the form (r(x+1; y

1

); r(x; y

2

)), where the parity

of x is the same as the parity of w=2. The layer Y

2

ontains only omparators

of the form (r(x; y); r(x + 1; y)), while the layer Y

3

ontains omparators of the

form (r(x + 1; y

1

); r(x; y

2

)), where the parity of x is the same as the parity of

w=2 + 1.

Let J = (J

0

; J

1

; J

2

; J

3

) be a sequene of layers over R de�ned as follows (see

Fig. 18):
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w’ l +1 l +1 w’

Figure 17: The layers Y

i

for l = 3 and w

0

= 3. The layers Y

0

and Y

2

are drawn

with solid lines and the layers Y

1

and Y

3

are drawn with the dashed lines.

� J

0

= f(r(x; y); r(x + 1; y)) j 0 � y < h; (x +

w

2

) mod 2 = 0; (0 � x <

w=2� l � 1 or w=2 + l � x < w � 1)g;

� J

1

= f(r(x + 1; y); r(x; y + 1)) j 0 � y < h� 1; (x +

w

2

) mod 2 = 0; (0 �

x < w=2 � l� 1 or w=2 + l � x < w � 1)g;

� J

2

= f(r(x; y); r(x + 1; y)) j 0 � y < h; (x +

w

2

) mod 2 = 1; (0 � x <

w=2� l � 1 or w=2 + l � x < w � 1)g;

� J

3

= f(r(x + 1; y); r(x; y + 1)) j 0 � y < h� 1; (x +

w

2

) mod 2 = 1; (0 �

x < w=2 � l� 1 or w=2 + l � x < w � 1)g:

Note that the only olumns that ontain the registers used by the ompara-

tors from both J and Y are the olumns w=2� l � 1 and w=2 + l.

The layers M

0

, M

1

, M

2

, and M

3

that are de�ned below are presented on

Fig. 21 for the ase l = 3 and w

0

= 3. We de�ne the sequene of layers of P

l;w

0

as M = (M

0

;M

0

;M

1

;M

0

;M

2

;M

0

;M

3

;M

0

), where

� M

0

= f(r(x; y); r(w � 1� x; y)) j 0 � x < w=2g (see Fig. 19),

� for eah t, 0 � t � 3, the layer M

t

ontains Y

t

[ J

t

, and

� for (the unique) t 2 f0; 2g, suh that J

t

does not ontain omparators

with registers from the leftmost and the rightmost olumn, M

t

ontains

the omparators f(r(w � 1; y); r(0; y + 1)) j 0 � y < h� 1g, and
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w’ l +1 l +1 w’

Figure 18: The layers J

i

for l = 3 and w

0

= 3. The layers J

0

and J

2

are drawn

with solid lines and the layers J

1

and J

3

are drawn with the dashed lines.

w’ l +1 l +1 w’

Figure 19: The layer M

0

(the left-right omparators) for l = 3 and w

0

= 3.
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� there are no other omparators in the layers of M .

We all the layers M

0

and M

2

and their omparators horizontal. (Despite

that the omparators of the form (r(w � 1; y); r(0; y + 1)) are slightly slanted,

they are also alled horizontal.)

M

1

and M

3

are alled bak-jump layers, and the omparators from these

layers are alled bak-jump omparators.

We all the layers M

0

left-right layers and their omparators left-right om-

parators.

Observe that P

l;w

0

has following property:

Fat 5.13 The horizontal omparators together with the left-right omparators

between olumns w=2� 1 and w=2, are all omparators of the odd-even transpo-

sition network on R.

Note that the layer M

0

ontains only omparators of the form (r(x; y); r((x+

1) mod w; y

0

)) while the layer M

1

ontains omparators of the form (r((x +

1) mod w; y

1

); r(x; y

2

)), where the parity of all x's is the same as the parity

of w=2. The layer M

2

ontains only omparators of the form (r(x; y); r((x +

1) mod w; y

0

)) while the layer M

3

ontains omparators of the form (r((x +

1) mod w; y

1

); r(x; y

2

)), where the parity of all x's is the same as the parity of

w=2 + 1.

The only pairs of onseutive (modulo w) olumns that are not onneted

by the bak-jump omparators is w=2� 1, w=2, and w � 1, 0.

Fig. 20 presents a shemati view of the network P

l;w

0

. The subsets of

registers used by the omparators from Y (respetively from J) are drawn as

the boxes labeled by the letter Y (respetively J). The omparators that are

neither ontained in the layers of Y nor in the layers of J are drawn as the

arrows. The only left-right omparators depited are the omparators between

the two middle olumns.

Fig. 21 presents the network P

l;w

0

for l = 3 and w

0

= 3 (without the left-right

omparators).

Fig. 22 presents P

3;3

in a folded state (i.e. the left half of the network has

been rotated 180 degrees around the entral vertial axis in suh a way that the

mirror reetion of it is behind the right half of the network). The �gure also

presents the omparators between the olumns w � 1 and 0 (with the left-right

omparators drawn as dotted arrows).

We partition the set of registers R into the left set S

0

= fr(x; y) j 0 �

x � w=2 � 1g and the right set S

1

= fr(x; y) j w=2 � x � w � 1g. The

members of S

0

(respetively S

1

) are alled left (respetively right) registers.

For any register r = r(x; y), we de�ne a shadow of r, denoted by shd(r), as

the register r(w � 1 � x; y). Note that in the folded state, the shadow of eah

register r is plaed in the same plae as r, and that M

0

ontains omparators

of the form (shd(r); r). For any subset X � S we de�ne the shadow of X as

shd(X) = fshd(r) j r 2 Xg.
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.

.

.

.

.

.

the
leftmost
column

Y Y JJ

Figure 20: The layers of P

l;w

0

.

w’ l +1 l +1 w’

row  y’c

active

area

Figure 21: The network P

3;3

without the left-right omparators. The horizontal

layers are drawn with solid lines, while the bak-jump layers are drawn with

dashed lines.
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(a)                                                                       (b) 

row  

area

0columns

y’c

w’l +1

-1w

active

Figure 22: View of P

3;3

after folding the left half (a) and the omparator on-

netions between the olumns 0 and w � 1 (b).
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5.2.1 Runtime analysis of P

l;w

0

Reall that n = 2(l + 1 + w

0

) � 2

l

is the number of registers of P

l;w

0

.

Lemma 5.14 For k < w

0

=6, the network P

l;w

0

sorts any k-disturbed on�gura-

tion in O(w

0

+ l) iterations.

Let R, w, h, r, Y , J , M be de�ned as before. Let L = (L

0

; L

1

; L

2

; L

3

; L

4

; L

5

; L

6

; L

7

)

be the sequene of layers of P

l;w

0

. (i.e. L

1

= L

3

= L

5

= L

7

= M

0

and L

2i

= M

i

.)

Let C be the set of all omparators of P

l;w

0

.

It is enough to show that P

l;w

0

sorts any k-disturbed on�guration onsisting

of zeroes and ones in O(w

0

+ l) iterations. Let  be an arbitrary zero-one k-

disturbed on�guration of R. Let z be a number of zeroes in . Then y

0



= bz=w

is the index of the �rst row of registers that intersets the ones area. For t � 0,

let 

t

be a on�guration obtained after exeution of t steps of P

l;w

0

on .

Let 

0

be a on�guration of R de�ned as follows.



0

(r) =

8

<

:

0 if (r) = 0;

1 + jfp 2 R j p < r; (p) = 1gj if (r) = 1 and r = r(x; y) for y < y

0



;

k + 1 if (r) = 1 and r = r(x; y) for y � y

0



:

The on�guration  has at most k displaed ones. Thus in 

0

the registers

above the row y

0



, whih ontain displaed ones in , ontain the value from the

range f1; : : : ; kg, every value ourring exatly one.

Let the sequenes of the on�gurations 

0

t

and 

00

t

be de�ned as follows:

� 

00

0

= 

0

, and

� for t � 0, 

0

t

is the on�guration 

00

t

with all the values from the range

f1; : : : ; kg below the row y

0



� 1 replaed by the value k + 1.

� for t � 0, 

00

t+1

= L

t mod 8

(

0

t

).

The next laim follows diretly from the de�nitions introdued:

Claim 5.15 For eah t � 0, the on�guration 

0

t

has the following properties:

1. For eah register r, 

t

(r) = 1 if and only if 

0

t

(r) > 0.

2. If a register r is above the row y

0



� 1, then 0 � 

0

t

(r) � k.

3. If a register r is below the row y

0



� 1, then 

0

t

(r) = 0 or 

0

t

(r) = k + 1.

4. For eah i 2 f1; : : : ; kg, there is at most one register r suh that 

0

t

(r) = i.

We will show that all positive values of 

0

t

leave the region above the row

y

0



� 1 in O(l+w

0

) iterations. By Claim 5.15 that means that for some onstant

d, the on�guration 

d(l+w

0

)

ontains no ones above row y

0



� 1 and (sine the

network is symmetrial and we have plaed no restritions on ) 

d(l+w

0

)

ontains

no zeroes below y

0



+ 1. Thus 

d(l+w

0

)

is at most 3w-dirty and (by Fat 5.13 and

Lemma 3.4) will be sorted in the next O(w) = O(w

0

+ l) iterations.
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For t � 0, for eah pair of distint values q

1

and q

2

from the range f1; : : : ; kg

suh that q

1

< q

2

, we say that the value q

1

has been bloked by the value q

2

in

the register r at step t if and only if there is a omparator (r; r

0

) 2 L

t mod 8

and 

0

t

(r) = q

1

and 

0

t

(r

0

) = q

2

. We say that the value q

1

has been pulled bak

from register r

0

to the register r by the value q

2

at step t if and only if there is

a omparator (r; r

0

) 2 L

t mod 8

and 

0

t

(r) = q

2

and 

0

t

(r

0

) = q

1

. (So then we get



0

t+1

(r) = q

1

and 

0

t+1

(r

0

) = q

2

)

Bak-jump paths and stoppers. Below, we start to investigate in detail

the �ne struture of P

l;w

0

. We all the set of registers above the row y

0



an

ative area. The registers above the row y

0



are alled ative registers. We all

the ative registers with horizontal oordinates less than w=2 the left ative

registers. The remaining registers are alled the right ative registers. Let S

0

denote the set of ative registers and let S

0

0

= S

0

\ S

0

and S

0

1

= S

1

\ S

0

.

We all an right ative register r a bak-jump starter if and only if there

is no bak-jump omparator of the form (r

0

; r). We all an ative register r a

bak-jump stopper if and only if there is no bak-jump omparator of the form

(r; r

0

) suh that r

0

is in the ative area. For eah bak-jump starter r, we de�ne

a bak-jump path of r as the longest sequene of ative registers (r

0

; : : : ; r

s

),

suh that r

0

= r, and for 0 � t < s there is a bak-jump omparator (r

t

; r

t+1

).

Note that r

s

is a stopper, and that eah right ative register is on exatly one

bak-jump path.

On the Fig. 21, we depit the ative area for some on�guration . The

bak-jump stoppers are marked with the boxes. Observe that the length of eah

bak-jump path is not greater than w=2. (Indeed, olumn index of a starter is

not greater than w�1, the horizontal oordinate dereases by one as we go from

one register of the bak-jump path to the next one, and all the ative registers

in olumn w=2 are stoppers.)

We onsider the positions of eah positive value in the ative area in the

on�gurations 

0

t

. We all the values from the range f1; : : : ; kg ative. Note

that eah ative value may disappear (be replaed by k + 1) if it is ompared

with a zero from outside the ative area.

Zones and the levels of registers. We partition the set S

0

1

into zones Z

i;j

and Z

0

i;j

de�ned as follows (see Fig. 23 (a)):

� for 0 � x � l � 1

Z

x;0

= fr(w=2+x; y) 2 S

0

1

j r(w=2 + x; y) is a stopper and y

0



� y > 2

l�1�x

g;

� for 0 � x � l � 1

Z

0

x;0

= fr(w=2+x; y) 2 S

0

1

j r(w=2 + x; y) is a stopper and y

0



� y � 2

l�1�x

g;

� for l � x � w=2� 1

Z

x;0

= fr(w=2 + x; y

0



� 1)g;
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Figure 23: Partition of the right ative registers into the zones (a) and the levels

of the zones (b). The arrows on (b) represent the ars of the tree of zones T .

� for x

0

> 0

Z

x;x

0

= fr 2 S

0

1

j there is a bak-jump omparator (r; r

0

) suh that r

0

2 Z

x;x

0

�1

g;

and

Z

0

x;x

0

= fr 2 S

0

1

j there is a bak-jump omparator (r; r

0

) suh that r

0

2 Z

0

x;x

0

�1

g:

It follows diretly from the de�nition that eah zone is ontained in a single

olumn of registers. We all the stoppers from the zones Z

x;0

upper stoppers

and the stoppers from the zones Z

0

x;0

lower stoppers.

We de�ne a zones tree T as a direted graph with the set of verties V =

fZ

x;x

0

jZ

x;x

0

6= ;g[fZ

0

x;x

0

jZ

0

x;x

0

6= ;g and the set of ars E = E

1

[E

2

(see arrows

on Fig. 23 (b)), where

E

1

= f(Z

x;x

0

+1

; Z

x;x

0

) 2 V � V g [ f(Z

0

x;x

0

+1

; Z

0

x;x

0

) 2 V � V g

and

E

2

= E

2;1

[ E

2;2

[ E

2;3

;

where

E

2;1

= f(Z

x;0

; Z

0

x;1

) 2 V � V j 0 � x � l � 1g;

and

E

2;2

= f(Z

0

x;0

; Z

x+1;0

) 2 V � V j 0 � x � l � 1g;
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and

E

2;3

= f(Z

x;0

; Z

x+1;0

) 2 V � V j l � x � w=2g:

Ars of E

1

are alled bak-jump ars and ars of E

2

are alled horizontal ars.

The arrows on Figure 23 (b) orrespond to the ars of the zones tree. The solid

arrows represent E

1

. The dashed arrows represent E

2;1

. The dotted arrows

represent E

2;2

and E

2;3

.

The root of T is Z

w=2�1;0

(i.e. the singleton ontaining the last register of

the ative area).

For eah zone Z 2 V we de�ne its level (denoted by level(Z)) as a distane

from the root in the zones tree T . For eah ative register r 2 S

1

, we de�ne

level(r) as the level of the zone ontaining r. For eah ative register r 2 S

0

we de�ne: level(r) = level(shd(r)). For eah ative value i, let level of i in

on�guration 

0

t

denote the level of ative register that ontains value i or zero

if i does not exist in 

0

t

. The levels of the zones are displayed on Fig. 23 (b).

Claim 5.16 The maximal vertex level in the tree T is O(w

0

+ l).

Proof. Consider the path from an arbitrary vertex of T to the root of T .

First we make some t

1

steps by the bak-jump ars, until we reah the �rst zone

onsisting of the stoppers. Thus 0 � t

1

� w=2, sine we an go through at most

w=2 olumns leftwards. Then, while we are in the l leftmost olumns of S

0

1

,

we need at most two steps to advane from the zone of upper stoppers to the

zone of lower stoppers in the same olumn, and then we make three steps eah

time to go from the zone of lower stoppers to the zone of lower stoppers in the

next olumn on the right side. As soon as we enter any zone of stoppers in the

olumns w=2 + l; : : : ; w � 1, we go to the next olumn on the right side during

eah single step. 2

Let l

0

T

denote the maximal level of a (non-empty) zone in T . We partition the

set of levels into layers of levels. Note that for 0 < x < l, we have level(Z

0

x�1;0

)�

level(Z

0

x;0

) = 3. Let b = level(Z

0

0;0

) mod 3. We de�ne the ith layer of levels as

L

i

= fj j 3i+ b � j < 3(i+ 1) + bg:

The zones with the levels in the odd and in the even layers have been depited

by di�erent shades on the Fig. 23. Note that by the de�nition of b, the level of

eah zone Z

0

x;0

is a minimum of some layer of levels.

For eah l � 0, we de�ne the set of registers A

l

as follows:

A

l

= fr 2 S

0

1

j level(r) � lg:

Thus A

l

is the union of the zones with the levels not greater than l. Note also

that A

l

0

T

= S

0

1

and A

0

= Z

w=2�1;0

.

The following three laims follow from the de�nition of the network and from

the de�nitions of the zones and the levels of the ative registers.

Claim 5.17 If (r; r

0

) is a omparator suh that r and r

0

are ative registers,

then one of the following ases holds:
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1. (r; r

0

) is a left-right omparator and r

0

= shd(r) and hene level(r) =

level(r

0

).

2. (r; r

0

) is a horizontal omparator and r; r

0

2 S

0

1

, and either level(r

0

) =

level(r) � 1, or r 2 Z

0

x;0

and r

0

2 Z

0

x+1;0

for some 0 � x � l � 2 and

level(r

0

) = level(r) � 3, or there is a bak-jump ar in T from the zone

ontaining r

0

to the zone ontaining r and level(r

0

) = level(r) + 1.

3. (r; r

0

) is a horizontal omparator and r; r

0

2 S

0

0

, and either level(r

0

) =

level(r) + 1, or r 2 shd(Z

0

x+1;0

) and r

0

2 shd(Z

0

x;0

) for some 0 � x � l� 2

and level(r

0

) = level(r)+3, or there is a bak-jump ar in T from the zone

ontaining shd(r) to the zone ontaining shd(r

0

) and level(r

0

) = level(r)�

1.

4. (r; r

0

) is a horizontal omparator and r is in olumn w � 1 and r

0

is in

olumn 0, and level(r

0

) = level(r) � 2 or level(r

0

) = level(r).

5. (r; r

0

) is a bak-jump omparator and r; r

0

2 S

0

1

, and level(r

0

) = level(r)�1.

6. (r; r

0

) is a bak-jump omparator and r; r

0

2 S

0

0

, and either level(r

0

) <

level(r) or level(r

0

) = level(r) + 1. The seond ase is only possible if the

zones Z

1

and Z

2

ontaining respetively shd(r) and shd(r

0

) are onneted

by the ar (Z

2

; Z

1

) in T (see the following �gure).

Z 1

Z 2
r

r’

Claim 5.18 If r 2 S

0

1

and level(r) > 0, then there is a horizontal or bak-

jump omparator (r; r

0

) suh that r

0

2 S

0

1

and either level(r

0

) = level(r) � 1 or

level(r

0

) = level(r)� 3. The ase level(r

0

) = level(r)� 3 our only when r is in

the lower half of Z

0

x;0

and r

0

2 Z

0

x+1;0

, for some 0 � x � l � 2, and (r; r

0

) is a

horizontal-omparator.

Claim 5.19 Let i 2 f0; 4g (i.e. L

i

is a horizontal layer). For eah omparator

(r; r

0

) 2 L

i

\ (S

0

1

� S

0

1

) suh that level(r

0

) = level(r) + 1, there is a bak-jump

omparator (r

0

; r

00

) 2 L

i+2

\ (S

0

1

� S

0

1

) suh that level(r

00

) = level(r).

Releasing the layers of register levels by the displaed values. For

eah t � 0, for 1 � i � k, we say that a register r is released from the value i at

step t if and only if for eah t

0

� t, 

0

t

(r) 6= i.

To oneive the idea used in the analysis of this part of the omputation

onsider the following simple example: Suppose we have an odd-even transpo-

sition sorting network (see De�nition 3.2) with a on�guration onsisting of the
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k positive values: 1; : : : ; k, plaed in arbitrary registers and zeroes plaed in

all the remaining registers. Note that at the �rst omputation step (i.e. after

applying the �rst layer), the �rst register is released from the greatest value (i.e.

from k). After the seond step the �rst and the seond registers are released

from the value k and thus after the third step the �rst register is released from

k � 1. In suh a way we an de�ne for any t � 0 and i < k the set of registers

that must be released from the value k� i at step t. Note that the border of the

area that must be released from the value k� i� 1 is adjaent to the border of

the area that must be released from the value k � i. In our network we use the

subsets A

l

for a onstrution of analogous sets.

Reall that by a step we mean an appliation of a single layer of the network

to the urrent on�guration, while by an iteration we mean the appliation of

the entire sequene of layers of a periodi network.

Reall also that eah ative value may disappear, thus releasing all ative

registers. For the simpliity, we skip this ase in the proofs of the following

laims.

In the following we assume that w

0

� 6k.

The aim of the �rst phase of the omputation is to move eah positive value

i in the ative region into

A

6(k�i)+6

[ shd(A

6(k�i)+6

) � A

w

0

[ shd(A

w

0

):

Claim 5.20 Let t � 0 and j > 0 be integers. For eah ative value i, if all ative

registers outside A

maxL

j

[shd(A

minL

j

) are released from the values greater than

i at step t, and i is inside A

minL

j+1

[ shd(A

minL

j+1

) in on�guration 

0

t

, then

all ative registers outside A

maxL

j+1

[ shd(A

minL

j+1

) are released from i at step

t.

Proof. We have to show that if the values greater than i remain in the area

A

maxL

j

[shd(A

minL

j

), and the value i is inside A

minL

j+1

[shd(A

minL

j+1

), then

i will never leave A

maxL

j+1

[ shd(A

minL

j+1

).

Assume that the values greater than i have released all ative registers that

are outside A

maxL

j

[ shd(A

minL

j

).

Fat 5.21 If the value i is in the shd(A

minL

j+1

), then as soon as it leaves

shd(A

maxL

j

) it must enter S

1

in at most one more (left-right) step and it an

enter S

1

only inside A

minL

j+1

.

The �rst part of the fat is implied by the fat that all ative registers outside

A

maxLj

are released from the values greater than i.

The seond part of the fat follows from the de�nition of L

j

and of the levels

of the zones: The value i an enter S

0

n shd(A

maxL

j

) only by being pulled bak

by some greater value (with a horizontal omparator between olumns w�1 and

0) diretly to A

maxL

j

� A

minL

j+1

or by going forward through the omparators

that have the �rst endpoint in shd(A

maxL

j

) and the seond endpoint in S

0

n

shd(A

maxL

j

). In the seond ase i either enters A

maxL

j

� A

minL

j+1

through

some left-right omparator or enters shd(A

minL

j+1

)nshd(A

maxL

j

) through some
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omparator ontained in S

0

0

� S

0

0

. (Note that by the Claim 5.17 (6) the bak-

jump omparator an inrease the level of the register ontaining i by at most

one, and by the de�nition of L

j

, the horizontal omparator from S

0

0

� S

0

0

an

not move i diretly outside shd(A

minL

j+1

).)

Fat 5.22 If the value i is in the A

minL

j+1

, then it annot be moved outside

A

minL

j+1

+1

[ shd(A

minL

j+1

).

The omparators that an move the value i from A

minL

j+1

to S

0

1

nA

minL

j+1

must have the �rst endpoint in A

minL

j+1

and the seond endpoint outside

A

minL

j+1

in S

0

1

. The only suh omparators are the horizontal omparators with

the �rst register in A

minL

j+1

and the seond register in A

minL

j+1

+1

nA

minL

j+1

.

But, by the Claim 5.19, as soon as i is moved to A

minL

j+1

+1

n A

minL

j+1

, it is

moved bak to the zone with the level minL

j+1

by the following bak-jump step,

sine the zones with the level minL

j+1

are released from the values greater than

i. If the value i leaves S

1

, then it must be shifted by a horizontal omparator

from the olumn w � 1 to the olumn 0 to the shadow of the zone with not

greater level or be pulled bak by a greater value somewhere inside shd(A

minL

j

)

through some left-right omparator. 2

Claim 5.23 Let t � 0 and j > 0 be integers. For eah ative value i, if

all ative registers outside A

maxL

j

[ shd(A

minL

j

) are released from the values

greater than i at step 8t (i.e. after iteration t), and the ative registers outside

A

maxL

j+2

[shd(A

minL

j+2

) are released from i at step 8t, then after iteration t+6

(i.e. after step 8(t+ 6)), the ative registers outside A

maxL

j+1

[ shd(A

minL

j+1

).

are released from the value i.

Proof. Assume that after iteration t we have all ative registers outside

A = A

maxL

j

[ shd(A

minL

j

) released from the values greater than i and i has

released all ative registers outside A

maxL

j+2

[ shd(A

minL

j+2

)

We show that within the next 6 iterations the value i visits some register

from A

0

= (A

minL

j+1

[ shd(A

minL

j+1

)). By Claim 5.20, as soon as i enters A

0

it releases all ative registers that are outside A

maxL

j+1

[ shd(A

minL

j+1

).

If after iteration t, the value i is inside (A

maxL

j+2

[ shd(A

minL

j+2

)) n A

0

;

then in at most the next 2 steps it must either:

� enter A

0

, or

� be moved by the �rst left-right layer to A

maxL

j+2

nA

minL

j+1

, sine it an

not be bloked by any greater value outside A

0

.

After that either:

� i starts being moved by the bak-jump omparators in S

1

, or

� (if i is in the olumn w � 1) i an be moved by the next horizontal layer

to shd(A

maxL

j+2

) and then (if i is still outside A

0

) bak to A

maxL

j+2

by

the following left-right layer, or
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� i an be moved by the next horizontal layer to some register in S

0

1

with the

level not greater than maxL

j+2

(sine the registers with the levels greater

than maxL

j+2

are released from i).

After that (if i is still in A

maxL

j+2

n A

minL

j+1

) the value i is moved only

by the bak-jump omparators inside S

1

until i enters A

minL

j+1

or reahes a

stopper. (Eah suh bak-jump step happens every four omputation steps and

dereases level of i by at least 1.)

If i is still inside A

maxL

j+2

n A

minL

j+1

, then in the next iteration it starts

moving through either horizontal or bak-jump omparators in S

0

1

until it enters

A

minL

j+1

. Indeed, eah time i is moved in this phase, the level of i is dereased

either by 1 (if i is moved by a bak-jump or horizontal omparator from a zone

Z

1

to Z

2

suh that (Z

1

; Z

2

) is an ar in the tree of zones T ) or by 3 (if, for

some x < l � 1, i is moved from the lower half of the zone Z

0

x;0

to Z

0

x+1;0

by a

horizontal omparator). Note that if Z

0

x+1;0

� A, then Z

0

x;0

� A

minL

j+1

, sine

the levels of zones of lower stoppers are minimal within their layers of levels.

Thus, i annot be bloked by a greater ative value unless it is in A

0

.

We have shown that latest of all at the seond iteration following the iteration

t, the level of i starts being dereased by at least 1 eah iteration. Sine the

initial level is not greater than maxL

j+2

and maxL

j+2

� minL

j+1

= 5, the

total number of the iterations needed to move i to A

minL

j+1

is not greater than

6. 2

For t � 0, for 1 � i � k we de�ne the the tth level limit for i, denoted l

t;i

as

follows:

l

t;i

= maxL

maxf2(k�i);l

0

T

�t+2(k�i)g

:

Claim 5.24 Let t � 0. For eah i, 1 � i � k, the ative registers outside

A

l

t;i

[ shd(A

l

t;i

�2

) are released from the value i after the iteration 6 � t.

Proof. Let 1 � i � k. For t = 0, we haveA

l

0;i

[shd(A

l

0;i

�2

) = A

maxL

l

0

T

+2(k�i)

[

shd(A

maxL

l

0

T

+2(k�i)

�2

) = A

3(l

0

T

+2(k�i))+b+2

[ shd(A

3(l

0

T

+2(k�i))+b

) = S

0

1

[ S

0

0

=

S

0

: Thus we have proven the ase t = 0 for all the values i, 1 � i � k.

For the ase i = k, onsider the behavior of the value k in the ative area.

After the �rst iteration k must be plaed in S

1

outside the olumn w�1 (if it is

above the row y

0



�1) and it remains there, sine there is no greater value in the

ative area that ould pull it bak to S

0

. Then at the next bak-jump step with

the omparators that have the �rst registers in the zone ontaining k, the value

k starts to travel through the zones of S

1

to the root of T . During eah step of

the travel, the value k either is moved to the zone onneted with its urrent

zone by an ar or if it is in the lower half of some zone Z

0

x;0

, for 0 � x � l � 2,

to the zone Z

0

x+1;0

. At least one step of the travel is performed during eah

iteration.

Thus after the �rst iteration all the ative registers that are outside A

3l

0

T

�1

=

A

l

0

T

are released from the value k. After the tth iteration (and hene after the

iteration 6t) all the ative registers that are outside A

maxf0;3l

0

T

�tg

are released
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from the value k. Sine

A

maxf0;3l

0

T

�tg

� A

l

t;k

[ shd(A

l

t;k

�2

)

the ase i = k has been proven.

Let 1 � i < k and t > 1. By the indution hypothesis, all ative reg-

isters outside A

l

t�1;i

[ shd(A

l

t�1;i

�2

) are released from i after 6(t � 1) iter-

ations and all the ative registers outside A

l

t�1;i+1

[ shd(A

l

t�1;i+1

�2

) are re-

leased from the values greater than i after 6(t� 1) iterations. We have l

t�1;i

=

maxL

maxf2(k�i);l

0

T

�t+1+2(k�i)g

and l

t�1;i+1

= maxL

maxf2(k�i�1);l

0

T

�t+1+2(k�i�1)g

.

Let j = maxf2(k�i�1); l

0

T

�t+1+2(k�i�1)g. Thus all ative registers outside

A

maxL

j

[ shd(A

minL

j

) are released from the values greater than i at step t, and

ative registers outside A

maxL

j+2

[ shd(A

minL

j+2

) are released from i at step t,

and by the Claim 5.23, the ative registers outside A

maxL

j+1

[ shd(A

minL

j+1

)

are released from the value i within the next 6 iterations. 2

Corollary 5.25 For eah i, 1 � i � k, the ative registers that are outside

A

maxL

2(k�i)

[ shd(A

minL

2(k�i)

) are released from the value i after 6l

0

T

iterations.

Note that maxL

2(k�i)

= 6(k � i) + b + 2. Thus after 6l

0

T

iterations of

omputation all positive values will remain in the zones with levels not greater

than 6k � 4 + b and their shadows. Sine b � 2 and w

0

� 6k, all those zones

are the singletons in A

w

0

[ shd(A

w

0

) in the rightmost w

0

olumns (in the folded

version of P

l;w

0

). The onnetions between the registers in this part of the

network have a very regular struture. We use this regularity to show that all

positive values will ow into the row y

0



� 1 in the next O(w

0

) iterations.

The following laim is a olletion of some properties of (A

w

0

[ shd(A

w

0

))-

restrition of the network, useful in the analysis of the next two phases of the

network omputation.

Claim 5.26 1. shd(A

w

0

) is ontained in the olumns 0; : : : ; w

0

� 1,

2. A

w

0

is ontained in the olumns w � w

0

; : : : ; w � 1,

3. A

w

0

[shd(A

w

0

) is ontained in the rows y

0



�1; : : : ; y

0



�1�maxfy j w

0

� 2yg

4. For 0 � i � maxfy j w

0

� 2yg, for 0 � j � w

0

� 2i, level(r(w � 1� j; y

0



�

1� i)) = level(r(j; y

0



� 1� i)) = j + 2i:

5. For eah r(x; y) 2 shd(A

w

0

), there is a left-right omparator (r(x; y); shd(r(x; y)))

and level(shd(r(x; y))) = level(r(x; y)):

6. For eah r(x; y) 2 A

w

0

suh that y < y

0



�1, there is a bak-jump ompara-

tor (r(x; y); r(x � 1; y + 1)) and level(r(x � 1; y + 1)) = level(r(x; y)) � 1:

7. For eah r(x; y) 2 A

w

0

suh that x < w�1, there is a horizontal ompara-

tor (r(x; y); r(x + 1; y)) and level(r(x + 1; y)) = level(r(x; y)) � 1:

8. For eah omparator (r; r

0

) 2 A

w

0

�A

w

0

, level(r

0

) = level(r) + 1.
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9. There is a omparator (r(w� 1; y

0



� 2); r(0; y

0



� 1)). (The entrane to the

shadow of last row of A

k

.)

10. For eah 0 � i < k, there is a omparator (r(i; y

0



� 1); r(i + 1; y

0



� 1)).

(The existene of the Hamiltonian path of omparators in the shadow of

the last row of A

k

.)

Proof. The properties listed follow diretly from the de�nition of the levels

of registers. 2

We start the seond phase of omputation with a on�guration where eah

positive value i, 1 � i � k is inside A

6(k�i)+b+2

or its shadow, or does not exist,

and our aim is to obtain a on�guration suh that eah i, 1 � i � k is inside

A

k�i

. The seond phase is very similar to the �rst phase, but the part of a

network oupied by the ative values in the seond phase has a very simple

struture.

Claim 5.27 Assume that we start some iteration of the seond phase with a

on�guration suh that for some j, 0 � j � w

0

, for eah i, 1 � i � k, the

ative registers outside A

maxfk�i;j�2ig

[ shd(A

maxfk�i;j�2ig

) are released from

the value i. Then after the next iteration for eah i, 1 � i � k, the ative

registers outside A

maxfk�i;j�1�2ig

[ shd(A

maxfk�i;j�1�2ig

) are released from i.

Proof. For the value k the laim is obvious, sine k is never bloked

in the ative region. Consider any i < k. The registers that are outside

A

maxfk�i�1;j�2i�2g

[ shd(A

maxfk�i�1;j�2i�2g

) are released from all the values

greater than i, and i must be inside A

maxfk�i;j�2ig

[ shd(A

maxfk�i;j�2ig

). If i

is outside A

maxfk�i;j�2i�2g

[ shd(A

maxfk�i;j�2i�2g

), then (after last left-right

step of the previous iteration) i must be plaed in some register with the level

maxfk� i; j�2ig or maxfk� i; j�2i�1g in S

0

1

and by the Claim 5.26 (points 6

and 7) there is a omparator that moves it to the register in the A

maxfk�i;j�2i�1g

unless i is already there. 2

Corollary 5.28 After O(w

0

) iterations of the seond phase, eah ative value

i has released ative registers that are outside A

k�i

[ shd(A

k�i

).

Proof. The orollary follows from Claim 5.27. 2

Note that after the last left-right step of the last iteration the value k (if still

exists) must be in the only register of A

0

. The value k � 1 an be in one of the

four registers of A

1

[ shd(A

1

). We add one more iteration to the seond phase

to ensure that k � 1 is moved to A

1

. (We will use this in the proof of Claim

5.32.)

Final smoothing of displaed elements. The third phase we start in a

on�guration, where eah positive ative value i is inside A

k�i

[ shd(A

k�i

) or

does not exist. (Moreover, k and k � 1 are in A

0

and A

1

respetively.)

We modify slightly the de�nition of the on�gurations 

0

t

in the third phase

of the omputation: If t is the number of the omputation step in the third phase
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of the omputation, then 

0

t

is obtained from the on�guration 

00

t

by replaing

all positive values below the ative area and in the last row of A

k

with the value

k + 1.

Our aim is to obtain all ative values inside the row y

0



� 1. Let B denote

the last row of A

k

and let B

0

= shd(B) (i.e. B and B

0

are ontained in the

row y

0



� 1). All ative values are inside A = A

k

[ shd(A

k

). The third phase

will move all ative values to the lowest row of A. There are many ways the

ative values an enter the last row of A, however we onentrate only on the

horizontal omparator (r(y

0



� 2; w� 1); r(y

0



� 1; 0)) (mentioned as the entrane

to the shadow of the last row in point 9 of Claim 5.26). To eah register r in

A we assign a label q(r) that may inrease during the omputation. The label

q(r) is either integer value or an integer value plus 0:5, and k� q(r) is an upper

bound on the positive value that an still appear in r. Sine all positive values

that enter B are immediately replaed by k+1, the registers of B an have label

�1. The values k and k � 1 are in B already before the third phase. Thus all

the registers in B

0

are released from k and k� 1 and an be initially labeled by

1:5. The registers in A n (B [B

0

) have the initial labels equal to their levels. If

for some r 2 A there is a bak-jump or horizontal omparator inside A

k

or the

entrane to B

0

, of the form (r; r

0

) or (shd(r); r

0

) suh that q(r) � q(r

0

) = 0:5,

then either:

� the value k�q(r) is an integer and the register r

0

is released from k�q(r)+1

(thus the value k � q(r) an move from r to r

0

in at most single iteration

and we an then inrease q(r) by 0:5.), or

� the value k � q(r) is not an integer and we an inrease q(r) to the next

greater integer (by adding the value 0:5) without destroying the upper

bound on the positive values that an be in r.

In a similar way we an inrease the labels of registers in B

0

with the use of

horizontal omparators ontained in B

0

.

Here is a more formal de�nition of the labels. We assign the labels q

t

(r) to

the registers r of A

k

[ shd(A

k

) as follows:

� For r 2 B, for all t � 0:

q

t

(r) = �1:

� For r 2 B

0

:

q

0

(r) = 1:5:

� For r 62 B [ B

0

:

q

0

(r) = level(r):

� For t > 0:

q

t

(r(w � 1; y

0



� 2)) = q

t�1

(r(w � 1; y

0



� 2)) + 0:5

and

q

t

(r(0; y

0



� 2)) = q

t�1

(r(0; y

0



� 2)) + 0:5
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Figure 24: The labeling of the registers of (A

k

n B) [ B

0

of the folded P

l;w

0

,

where k = 4, for the subsequent values of t.

and

q

t

(r(0; y

0



� 1)) = q

t�1

(r(0; y

0



� 1)) + 0:5:

� For t > 0, for r(x; y) 2 B

0

, x > 0:

q

t

(r(x; y

0



� 1)) = q

t�1

(r(x � 1; y

0



� 1)):

� For t > 0, and r 2 A

k

nB:

if there is a horizontal or bak-jump omparator (r; r

0

) suh that r

0

2 A

k

nB

and q

t�1

(r

0

) = q

t�1

(r) � 0:5, then

q

t

(r) = q

t�1

(r) + 0:5

and

q

t

(shd(r)) = q

t�1

(shd(r)) + 0:5

else

q

t

(r) = q

t�1

(r)

and

q

t

(shd(r)) = q

t�1

(shd(r))

For t � 0, we de�ne the set Q

t;i

as follows:

Q

t;i

= fr 2 A

k

[ shd(A

k

) j q

t

(r) � ig:

Claim 5.29 For eah t � 0, for eah i > 2, if Q

t+1;i

n(B[B

0

) 6= Q

t;i

n(B[B

0

),

then either there exists a register r 2 A

k

above the row y

0



� 1 suh that q

t

(r) =

i� 0:5 or the only registers with the label q

t

equal to i are r(w � 1; y

0



� 2) and

shd(r(w � 1; y

0



� 2)).
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Proof. The laim follows from the de�nition of the labels. 2

Claim 5.30 For eah t > 0, if for some integer i there is a register above the

row y

0



� 1 with the label q

t

equal to i + 0:5, then eah register above the row

y

0



� 1 with the label q

t

equal to i+ 1 is either the �rst register or the shadow of

the �rst register of the horizontal or bak-jump omparator ontained in S

0

1

�S

0

1

with the seond register having the label q

t

equal to i+ 0:5.

Proof. The laim follows from the regular struture of the omparator

onnetions in A

k

and from the de�nition of the labels q

t

. All the registers with

the same level in A

k

above the row y

0



� 1 must have the same label q

t

and the

registers with the greater levels must have greater values of the labels. Thus if

the registers above the row y

0



� 1 with the level j < k have the label q

t

equal

to i+ 0:5, then the registers above the row y

0



� 1 with the level j+ 1 must have

the label q

t

equal to i+ 1 and there are no other registers above the row y

0



� 1

with the same label. 2

Claim 5.31 The set Q

2k;k

is ontained in the row y

0



� 1.

Proof. Consider the area above the row y

0



� 1. We may treat the fration

\0:5" as the signal that is emitted every step from the pair of registers r(w �

1; y



� 2), shd(r(w � 1; y



� 2)), and is broadast to other registers in A

k

above

the row y

0



� 1 and their shadows by the horizontal and bak-jump omparators

ontained in S

0

1

. (The omparator (r; r

0

) broadasts the signal from r

0

to r. The

arrows on the Fig. 24 denote the omparators used for broadasting.) One

the register reeives the \0:5" signal, it starts the proess of inreasing its label

by 0:5 every step. One the \0:5" signal reahes the registers with level k (i.e.

after k� 1 steps), the area of registers with the labels not greater than k starts

shrinking. During eah step all the labels k are replaed by the labels k + 0:5

and the labels k are plaed on the registers that had the labels k � 0:5 and are

\one omparator loser" to r(w � 1; y



� 2) or shd(r(w � 1; y



� 2)). 2

Claim 5.32 After t iterations of the third phase, eah ative value i, has re-

leased all ative registers outside Q

t;k�i

.

Proof.

The values k and k�1 are in the registers r(w�1; y

0



�1) and r(w�2; y

0



�1)

after the seond phase. (Reall that we have added one more iteration to the

seond phase, to ensure that k � 1 is also in A

1

.)

For t = 0, for 2 � i � k, eah register with the level i has the label q

0

not greater than i, thus after the seond phase the value k � i must be in

Q

0;i

� A

i

[ shd(A

i

).

Consider the value k� 2. After the last left-right step of the seond phase it

must be either in r(w � 3; y

0



� 1) or in shd(fr(w � 1; y

0



� 1); r(w � 2; y

0



� 1)g)

(or in fr(w � 1; y

0



� 1); r(w � 2; y

0



� 1)g if some of the greater values do not

exist) or in the register r(w � 1; y

0



� 2). In the last ase, the �rst horizontal

step ontaining the omparator (r(w � 1; y

0



� 2); r(0; y

0



� 1)) moves k � 2 to
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the shadow of the last row of A

k

(i.e to B

0

). As soon as k � 2 is in B

0

, it is

moved unbloked by the subsequent horizontal steps until it is in the shadow of

some register of B with the value 0, and then by the left-right step is moved to

B and replaed by k + 1. (Note that the length of B and B

0

is k and there are

at most k positive values in B [B

0

and hene k � 2 must meet some zero in B

while it is in B

0

.) Anyway k � 2 will never be pulled bak out of Q

t;2

after the

tth iteration.

Let t � 0. (If t = 0, then the iteration t is the last iteration of the seond

phase.) Consider the plaement of arbitrary positive value i, 1 � i � k�3 after

the iteration t.

If i is inside Q

t;k�i

n (B [ B

0

[ Q

t+1;k�i

), then i is (after the last left-right

step of the iteration t) in S

0

1

in some register r above the row y

0



� 1 suh that

q

t

(r) = k�i. There are no omparators (r; r

0

) 2 S

0

1

�S

0

1

suh that q

t

(r) < q

t

(r

0

).

If r 6= r(w � 1; y

0



� 2), then by the Claims 5.29 and 5.30 there is a bak-jump

or horizontal omparator (r; r

0

) suh that q

t

(r

0

) = q

t

(r) � 0:5, thus the value

k� i must be moved in the iteration t+ 1 to some register with the label q

t

not

greater than k� i� 0:5. If r = r(w� 1; y

0



� 2), then the horizontal omparator

(r(w � 1; y

0



� 2); r(0; y

0



� 1)) moves k � i in the iteration t + 1 to B

0

.

If i is inside Q

t;k�i

\ B

0

n Q

t+1;k�i

, then in the iteration t + 1 either i will

be moved to the next register of B

0

or it will be moved to B and replaed by

k + 1.

The following fat ensures that the value i will not leave Q

t+1;k�i

during the

iteration t+ 1 and later.

Fat 5.33 For eah omparator (r; r

0

) suh that q

t

(r) < q

t

(r

0

), we have r 2

shd(A

k

n B) and r

0

2 shd(A

k

n B), and (r; r

0

) is a horizontal omparator and

q

t+1

(r

0

) = q

t

(r) + 1.

The fat that r 2 shd(A

k

n B) and r

0

2 shd(A

k

n B) and that (r; r

0

) is a

horizontal omparator follows from the de�nition of q

t

and from the struture of

A

k

-restrition of the network: If q

t

(r) < q

t

(r

0

) then (r; r

0

) must be above B[B

0

,

sine for eah t the labels in B

0

[ B are less than any labels in A

k

[ shd(A

k

) n

(B

0

[B). On the other hand if r; r

0

2 A

k

[ shd(A

k

)n (B

0

[B) and q

t

(r) < q

t

(r

0

)

then level(r) < level(r

0

). The only omparators (r; r

0

) inside A

k

[ shd(A

k

) suh

that level(r) < level(r

0

) are the horizontal omparators inside shd(A

k

).

Let us show that q

t+1

(r

0

) = q

t

(r) + 1. We have either q

t

(r

0

) � q

t

(r) = 1 or

q

t

(r

0

)� q

t

(r) = 0:5. In the �rst ase, q

t+1

(r

0

)� q

t

(r) = q

t

(r

0

)� q

t

(r) = 1. (Note

that in this ase the seond endpoint of the bak-jump omparator starting in

shd(r

0

) has also the label q

t

less than q

t

(r

0

) � 0:5 and the label of r

0

remains

unhanged.) In the seond ase, q

t+1

(r

0

) � q

t

(r) = (q

t

(r

0

) + 0:5)� q

t

(r) = 1.

If during the iteration t+ 1 the value i enters Q

t+1;k�i

nQ

t;k�i�1

, then after

the subsequent left-right step it must be plaed in Q

t+1;k�i

\ S

0

1

. Thus i an

never leave Q

t+1;k�i

one it have entered it, sine there are no omparators in

S

0

1

that an move i to the register with the greater level. By the Fat 5.33, the

value k�i annot go diretly in single step from Q

t;k�i�1

to any register outside

Q

t+1;k�i

. 2
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Corollary 5.34 After 2k iterations of the third phase all the positive values in

the ative area are in the row y

0



� 1.

Proof. The orollary follows from the Claims 5.31 and 5.32. 2

We have shown that for w

0

� 6k the network P

l;w

0

moves in at most O(l +

w

0

+ k) iterations all the displaed ones of the k-disturbed input to the rows

y

0



�1 and y

0



and (by the symmetry of P

l;w

0

) all the displayed zeroes to the rows

y

0



and y

0



+ 1. Suh a on�guration is at most 3w-dirty and an be sorted (by

Lemma 3.4) in the O(w) iterations of the last fourth phase.

For arbitrary n and k suh that k < n=6, we an use the f0; : : : ; ng-restrition

of the network P

l;6k

, where l = minfm j 2

m

(m + 1 + 6k) � ng for sorting the

k-disturbed sequene of length n in O(l+ k) iterations. Note that l is O(log n),

so the onstrution ful�lls the properties stated.
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A The proof of Lemma 3.21

This appendix ontains the proof of Lemma 3.21 invented by Grzegorz Sta-

howiak.

Proof. Let x = (m)

k

(0)

l�k

, where 1 � k � l � 1. (The ases k = 0 and

k = l are trivial.) For t � 0 let x

t

= V

t

";m

(x). For t � 0 let b

t

2 f0; 1g

l

be

de�ned as follows: b

t

= V

t

0;1

((1)

k

(0)

l�k

). Note that for even t, b

t

is the output of

the t-th iteration of the l-odd-even transposition network applied to the vetor

(1)

k

(0)

l�k

, and b

t+1

is the result of the appliation of the �rst layer of the l-

odd-even transposition network to the vetor b

t

. By Lemma 3.3, for t > l, the

sequenes b

t

are sorted.

Claim A.1 1. If t � l, then b

t

= (0)

l�k

(1)

k

.

2. If 0 < t < l, then b

t

= (0)

maxf0;l�k�(l�t)g

d(1)

maxf0;k�(l�t)g

where d is

some zero-one subsequene.

The �rst part of the laim follows from the fat that b

t

are sorted for t � l.

The seond part follows from the fat that b

l

is sorted and that in a single

layer of the odd-even transposition network the number of register ontaining

the leftmost one an be inreased by at most one and the number of register

ontaining the rightmost zero an be dereased by at most one. 2

For some s > 0, let 

1

; : : : ; 

s

� 0 be a sequene of oeÆients suh that

P

s

i=1



i

= 1. Then the vetor 

1

v

1

+ : : : + 

s

v

s

is a onvex ombination of the

vetors v

1

; : : : ; v

s

.

Claim A.2 Let s > 0, let 

1

; : : : ; 

s

� 0, suh that

P

s

i=1



i

= 1, and let

v

1

; : : : ; v

s

2 [0;m℄

l

. Then

s

X

i=1



i

N

";m

(v

i

) � N

";m

(

s

X

i=1



i

v

i

)

and

s

X

i=1



i

P

";m

(v

i

) � P

";m

(

s

X

i=1



i

v

i

):

Proof. For even j or j = l, we have

hd

j

(N

";m

(

s

X

i=1



i

v

i

)) = hd

j

(

s

X

i=1



i

v

i

) = hd

j

(

s

X

i=1



i

N

";m

(v

i

)):

For odd j < l,

hd

j

(N

";m

(

s

X

i=1



i

v

i

)) = hd

j�1

(N

";m

(

s

X

i=1



i

v

i

)) + f

";m

(

s

X

i=1



i

(v

i;j

+ v

i;j+1

))
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and

hd

j

(

s

X

i=1



i

N

";m

(v

i

)) = hd

j�1

(

s

X

i=1



i

N

";m

(v

i

)) +

s

X

i=1



i

f

";m

(v

i;j

+ v

i;j+1

)

where v

i

= (v

i;1

; : : : ; v

i;l

). By the fat that f

";m

is a onvex funtion and that

hd

j�1

(N

";m

(

P

s

i=1



i

v

i

)) = hd

j�1

(

P

s

i=1



i

N

";m

(v

i

)) we have

hd

j

(N

";m

(

s

X

i=1



i

v

i

)) � hd

j

(

s

X

i=1



i

N

";m

(v

i

)):

(The proof for P

";m

is analogous). 2

Let t

0

be the minimal t suh that b

t

is sorted. We assume that 0 < k < l,

and hene t

0

> 0. For 0 � t � t

0

let e

t

= mb

t

. For t > t

0

let e

t

= e

t

0

�(t�t

0

) mod 2

.

Claim A.3 If t � 0 is even, then

N

";m

(e

t

) = N

";m

(e

t+1

) = "e

t

+ (1� ")e

t+1

:

If t � 1 is odd, then

P

";m

(e

t

) = P

";m

(e

t+1

) = "e

t

+ (1 � ")e

t+1

:

Moreover e

0

� P

";m

(e

0

).

Proof. For eah t � 0 let e

t

= (e

t;1

; : : : ; e

t;l

). Let t + 1 be odd. To see that

N

";m

(e

t

) = N

";m

(e

t+1

) note that for odd i < l, e

t;i

+ e

t;i+1

= e

t+1;i

+ e

t+1;i+1

.

For eah odd i < l, x

i

= e

t;i

+ e

t;i+1

= e

t+1;i

+ e

t+1;i+1

2 f0;m; 2mg. Let

v = (v

1

; : : : ; v

l

) = N

";m

(e

t

). Then v

i

= f

";m

(x

i

) and v

i+1

= g

";m

(x

i

). If x

i

= 0

or x

i

= 2m, then

v

i

= x

i

=2 = "e

t;i

+ (1 � ")e

t+1;i

and

v

i+1

= x

i

=2 = "e

t;i+1

+ (1� ")e

t+1;i+1

:

If x

i

= m, then e

t;i

= m and e

t;i+1

= 0 (also for t � t

0

) and e

t+1;i

= 0 and

e

t+1;i+1

= m, hene

v

i

= "x

i

= "e

t;i

+ (1 � ")e

t+1;i

and

v

i+1

= (1� ")x

i

= "e

t;i+1

+ (1� ")e

t+1;i+1

:

If l is odd, then

v

l

= e

t;l

= e

t+1;l

= "e

t;l

+ (1� ")e

t+1;l

:

Thus for all i, 1 � i � l, we have v

i

= "e

t;i

+ (1� ")e

t+1;i

. (The proof for P

";m

is analogous.)

The e

0

� P

";m

(e

0

) follows from the fat that e

0

is the least vetor from

[0;m℄

l

in the relation � with the sum of oordinates equal km. 2
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Corollary A.4 Let s > 0. Let 

1

; : : : ; 

s

� 0, suh that

P

s

i=1



i

= 1. Let



s+1

= 0. Let

P

s

i=0



i

e

i

� v. Then

bs=2

X

i=0

("(

2i

+ 

2i+1

)e

2i

+ (1� ")(

2i

+ 

2i+1

)e

2i+1

) � N

";m

(v) (6)

and



0

e

0

+

ds=2e

X

i=1

("(

2i�1

+ 

2i

)e

2i

+ (1 � ")(

2i�1

+ 

2i

)e

2i+1

) � P

";m

(v): (7)

Proof. Equation 6 follows from the fat that by the Claims A.3, A.2 and

by Lemma 3.17

bs=2

X

i=0

("(

2i

+ 

2i+1

)e

2i

+ (1 � ")(

2i

+ 

2i+1

)e

2i+1

) =

s

X

i=0



i

N

";m

(e

i

)

� N

";m

(

s

X

i=0



i

e

i

) � N

";m

(v):

Analogously we an prove the equation 7. 2

De�nition A.5 For t � 0 and i � 0 we de�ne the oeÆients �

t;i

as follows:

� �

0;0

= 1 and for i � 1, �

0;i

= 0.

� if t is odd, t � 1, then

�

t;i

=

�

"(�

t�1;i

+ �

t�1;i+1

) if i is even, i � 0

(1� ")(�

t�1;i�1

+ �

t�1;i

) if i is odd, i � 1

� if t is even, t � 2, then

�

t;i

=

8

<

:

�

t�1;0

if i = 0

"(�

t�1;i

+ �

t�1;i+1

) if i is odd, i � 1

(1� ")(�

t�1;i�1

+ �

t�1;i

) if i is even, i � 2

Note that, for eah t � 0,

P

�

t;j

= 1 and hene 

t

=

P

�

t;j

>0

�

t;j

e

j

is a

onvex ombination of e

0

; : : : ; e

l

. By the Corollary A.4 it is easy to show by

indution that:

Claim A.6 For eah t � 0,



t

� x

t

:

De�nition A.7 For t � 1, i � 0, let f

t;i

(the ow from i to i+ 1 in step t) be

de�ned as follows:

f

t;i

=

�

�

t�1;i

� �

t;i

if (t mod 2) 6= (i mod 2)

0 otherwise
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Claim A.8 Let t � 1. For all i � 0, f

t;i

� 0 and

� If 1 < i < l � 1, then f

t+1;i

= (1� ")f

t;i�1

+ "f

t;i+1

� f

t+1;1

= "f

t;2

Proof. The �rst equality an be shown as follows. If f

t+1;i

= 0, then

f

t;i�1

= 0 and f

t;i+1

= 0 and the equation follows. If f

t+1;i

6= 0, then f

t+1;i

=

�

t;i

� �

t+1;i

= �

t�1;i

+ f

t;i�1

� "(�

t�1;i

+ f

t;i�1

+ �

t�1;i+1

� f

t;i+1

) = (1 �

")�

t�1;i

� "�

t�1;i+1

+ (1 � ")f

t;i�1

+ "f

t;i+1

. By the De�nition A.5 we have

(1� ")�

t�1;i

= "�

t�1;i+1

and hene f

t+1;i

= (1� ")f

t;i�1

+ "f

t;i+1

. The seond

equality an be shown in a similar way. 2

De�nition A.9 For t � 1, for any integer i, let u

t;i

(upper bound on f

t;i

) be

de�ned as follows:

� u

1;0

= 1, and for i 6= 0, u

1;i

= 0, and

� for t > 1, u

t;i

= (1� ")u

t�1;i�1

+ "u

t�1;i+1

It is easy to verify the following laim.

Claim A.10 For t � 1, i � 0, f

t;i

� u

t;i

and for t � 1, �t + 1 � i � t � 1,

suh that (t mod 2) 6= (i mod 2),

u

t;i

=

�

t� 1

(t� 1 + i)=2

�

"

(t�1�i)=2

(1� ")

(t�1+i)=2

:

2

If t � 1, and �t+ 1 � i, and i+ 2 � t� 1, then

u

t;i

u

t;i+2

=

�

t�1

(t�1+i)=2

�

�

t�1

(t�1+i)=2+1

�

�

"

1� "

=

t+ (i+ 1)

t� (i+ 1)

�

"

1� "

For d > 1 if t � dl and i < l, then

u

t;i

u

t;i+2

�

dl + l

dl � l

�

"

1� "

=

d + 1

d� 1

�

"

1� "

If d > 1=(1 � 2") > 1, then  =

d+1

d�1

�

"

1�"

< 1. Thus f

t;i

� u

t;i

� 

(l�i)=2

.

(Indeed, f

t;i

is either 0 or it is not greater than u

t;i

� u

t;i+2

and u

t;l

� 1 and

u

t;l+1

� 1.) On the other hand, if f

t;i

> 0, then

f

t;i

= �

t�1;i

� �

t;i

= �

t�1;i

� "(�

t�1;i

+ �

t�1;i+1

)

� (1� ")�

t�1;i

= (1� ")

2

(�

t�2;i�1

+ �

t�2;i

):

Hene �

t�2;i�1

+ �

t�2;i

�

1

(1�")

2



(l�i)=2

. Thus, for even t � dl + 2 we an

estimate the sum of the oeÆients �

t�2;i

with i � l � r as follows:

l�r

X

i=0

�

t�2;i

=

X

0�i�l�r; f

t;i

>0

(�

t�2;i�1

+ �

t�2;i

) �

1

(1� ")

2

X

0�i�l�r; f

t;i

>0

p



(l�i)
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�

1

(1 � ")

2

X

i�l�r

p



(l�i)

�

1

(1 � ")

2

�

p



r

1�

p



We want to �nd r suh, that

P

l�r

i=0

�

t�2;i

<

1

ml

. Let

r >

2

log(1=)

�

log(ml) + log

�

1

(1� ")

2

(1�

p

)

��

:

Then (1=

p

)

r

>

ml

(1�")

2

(1�

p

)

and hene

1

(1� ")

2

�

p



r

1�

p



<

1

ml

:

If

ml �

1

(1� ")

2

(1�

p

)

;

then we an have any r suh that

r >

4

log(1=)

log(ml):

Note that for d = 4=(1� 2"),

 =

5� 2"

3 + 2"

�

"

1� "

and, for 0 < " <

1

3

,

 <

13

22

and hene

1

(1� ")

2

(1 �

p

)

<

9

4

�

1�

q

13

22

�
< 12:

Reall that



t�2

=

X

�

t�2;i

>0

�

t�2;i

e

i

:

Let 

t�2;j

be the j-th oordinate of 

t�2

, where j < l� k� r. By Claim A.1, e

i

has only zeroes as the j-th oordinate if i > l � r. Thus



t�2;j

� m

l�r

X

i=0

�

t�2;i

< 1=l:

Hene hd

l�r

(

t�2

) < (l � r)=l < 1. Reall that 

t�2

� x

t�2

. Thus we have

hd

l�r

(x

t�2

) < 1.

Lemma 3.21 follows if we take � = d � 4=(1� 2") and � �

4

log(1=)

.
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