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1 Introdu
tion

Sorting is one of the fundamental problems in data pro
essing. Many operations


an be performed mu
h more eÆ
iently on sorted data. There are many sorting

algorithms. Majority of them are programs for RAM ma
hine (i.e. for a 
las-

si
al model of 
omputer). Many of the sorting algorithms have been invented

for parallel (multipro
essor) 
omputers with spe
i�
 models of inter-pro
essor


onne
tions. One of the other approa
hes is to invent a spe
ialized hardware

for sorting and related problems. A very popular approa
h in this area are


omparator networks.

1.1 Comparator networks

A 
omparator is a simple devi
e with two inputs and two outputs. For two num-

bers x and y arriving on the �rst and the se
ond input, in a single 
omputation

step the 
omparator outputs the value minfx; yg on the �rst output and the

value maxfx; yg on the se
ond output (see Fig. 1). Thus a 
omparator sorts a

sequen
e of length two. We may pipeline two 
omparators so that an output

of the �rst 
omparator will be used as an input of the se
ond one. The se
ond


omparator 
an perform its 
omputation, on
e the �rst 
omparator is �nished.

A set of 
omparators with 
onne
tions des
ribed is 
alled a 
omparator net-

work. There is a restri
tion that no loop-ba
ks are allowed (i.e. no 
omparator

network may 
ontain a sequen
e of 
omparators 


0

; : : : ; 


k

, su
h that for all i,

an output of 


i mod (k+1)

is 
onne
ted to an input of 


(i+1) mod (k+1)

). The input

of the network is pla
ed on the un
onne
ted inputs of the 
omparators (
alled

inputs of the network) and the output is taken from the un
onne
ted outputs

(
alled outputs of the network). The input size of a network is the number of

its inputs. Sin
e ea
h 
omparator has two inputs and two outputs, the number

of inputs of any network is equal to the number of its outputs.

If the input size of the network N is n, then we label the 
omparator inputs

with n distin
t integers R

1

; : : : ; R

n

as follows:

� Ea
h input of the network is labeled by one of the numbers R

1

; : : : ; R

n

,

ea
h number used for only one input.

� For ea
h 
omparator 
 that has the �rst input labeled R

i

and the se
ond

input labeled R

j

, for some i 6= j, the �rst output of 
 is also labeled by

R

i

and the se
ond one by R

j

(as on Fig. 1).

� If an input of a 
omparator is 
onne
ted to an output labeled R

i

, then it

is also labeled R

i

.

For any network N with the input labeled by R

1

; : : : ; R

n

, for any ordered set

X , the input 
on�guration over X is a fun
tion 
 : fR

1

; : : : ; R

n

g ! X su
h that

the value 
(R

i

) is pla
ed on the network input labeled R

i

. Let 


0

(R

i

) denote

the value 
omputed by N on the output labeled R

i

for su
h an input. Then

the fun
tion 


0

: fR

1

; : : : ; R

n

g ! X is the output 
on�guration for the input


on�guration 
.
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Figure 1: A 
omparator with the inputs and outputs labeled by R

i

and R

j

.

We 
an de�ne a level of the 
omparator 
 in the network N as follows:

� the level of all 
omparators with both inputs un
onne
ted is one,

� the level of any 
omparator with at least one 
onne
ted input is l + 1,

where l is the maximal level of the 
omparators 
onne
ted to its inputs.

We 
an divide a 
omputation of a 
omparator network into steps, where during

a single step all 
omparators that have already values on both their inputs


ompute their outputs. Thus the maximal level is the minimal number of steps

needed by the network to 
ompute all its outputs.

For any 
omparator network N , we 
an partition its 
omparators into 
om-

parator subsets 
alled layers. The sequen
e of layers (L

1

; : : : ; L

d

) must satisfy

the following 
onditions:

� If 
 2 L

i

and some input of 
 is 
onne
ted to the output of some 
ompara-

tor 


0

2 L

k

, then k < i.

� For ea
h i, if 


1

2 L

i

and 


2

2 L

i

and the labels of inputs of 


1

(respe
-

tively of 


2

) are R

i

1

and R

j

1

(respe
tively R

i

2

and R

j

2

) then fR

i

1

; R

j

1

g \

fR

i

2

; R

j

2

g = ;.

For a network N with de�ned sequen
e of layers L = (L

1

; : : : ; L

d

) we assume

that at step t all 
omparators from L

t

perform its 
omputation. (Even if a


omparator of L

t

has its inputs already before step t, it waits until step t with

its work.) The length of L (i.e. d) is the depth of N . Note that the layer L

t


an


ontain only 
omparators with the level not greater than t.

An equivalent model of the 
omparator network 
omputation is the following

one: The data are stored in the registers labeled by R

1

; : : : ; R

n

, one label per

register. During step t, 1 � t � d, ea
h 
omparator 
 from layer L

t

takes the

values from the registers R

i

and R

j

(where R

i

and R

j

are the labels of the

�rst and the se
ond input of 
 respe
tively) and stores the minimum of the two

values in the register R

i

and the maximum in the register R

j

.

Fig. 2 illustrates three styles used for a graphi
al presentation of a 
ompara-

tor network. The example network 
ontains only four 
omparators A,B,C and D

with the inputs and outputs labeled by the numbers 1; 2; 3; 4. In the traditional

des
ription ea
h 
omparator is presented as a box with two input lines on its

left side and two output lines on its right side. The �rst input (respe
tively out-

put) is above the se
ond one. In the \wire-style" ea
h 
omparator is drawn as

2
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Figure 2: A 
omparator network presented in di�erent ways

a verti
al arrow 
onne
ting two wires (ea
h wire 
orresponds to a single label).

The arrow is dire
ted to the wire 
orresponding to the label of the se
ond (i.e.

maximum) output of the 
omparator. We 
an draw the verti
al lines instead

of the arrows if all arrows are dire
ted downwards. In the \layer-style" ea
h

layer is drawn as a dire
ted graph of degree 1, where the verti
es 
orrespond

to the labels and the ar
s 
orrespond to the 
omparators (i.e. if the �rst and

the se
ond output of a 
omparator 
 is labeled R

i

and R

j

respe
tively, then 


is depi
ted by an ar
 (R

i

; R

j

).)

Comparator networks 
an be easily implemented as spe
ialized hardware

devi
es. This is the main motivation to study these networks. The main pa-

rameters of a 
omparator network are the number of 
omparators and its depth

(the number of layers). The number of 
omparators 
orresponds to the amount

of hardware needed for the implementation of the network, while its depth


orresponds to its 
omputation time. We 
an also 
onsider other properties of


omparator networks su
h as the 
omplexity of the network ar
hite
ture and the

layout area needed for the implementation of the network in the VLSI te
hnol-

ogy. The last two issues are extremely important for VLSI design and suitability

for pra
ti
al appli
ations. One nontrivial issue is to judge what \simple ar
hi-

te
ture" is. There is no easy way to express it in a mathemati
al model so that

all te
hnologi
al limitations are well modeled. For this reason we mainly dis-


uss su
h parameters as depth and size of 
omparator networks, while quality

of ar
hite
ture is often expressed in an intuitive way.

Comparator networks has been the subje
t of intensive investigations in


omputer s
ien
e. Their main appli
ation is sorting input sequen
es. But there

are also many other tasks that 
an be performed by the 
omparator networks.

For example we 
an use them for

3



� merging sorted subsequen
es into a single sorted sequen
e,

� sorting sequen
es that di�er from a sorted sequen
e only on a limited

number of positions,

� inserting a value into a sorted sequen
e, so that the output is sorted,

� sele
ting the minimal or the maximal value (or the t smallest or the t

greatest values) of the input.

The �rst three appli
ations 
an be 
onsidered as sorting of the 
onstrained

input sequen
es, sin
e the output must be sorted. All these appli
ations gain

a growing interest due to the needs in tele
ommuni
ation te
hnology. EÆ
ient

methods of pa
ket reordering may provide new designs of intelligent routers

and similar devi
es. Sin
e 
ommuni
ation bottlene
k is one of most severe

problems in 
omputer te
hnology and pra
ti
e today, these methods deserve a

lot of attention.

There is a lower bound of 
(log n) on the depth of the 
omparator networks

for all of the above listed problems, where n is the size of the input. On the

other hand, there is a sorting network of depth O(log n), known as the AKS

network [1℄. Sin
e these problems are less general than the problem of sorting,

the upper bound on the depth is also O(log n). The best 
urrently known

sorting networks of depth O(log n) (whi
h are variants of the AKS network)

have the depth not less than 
 logn, where 
 is a 
onstant not less than 1000.

Additionally, their ar
hite
ture is very 
omplex and is based on the stru
ture

of (usually random) expander graphs or other random stru
tures. Thus, for

pra
ti
al appli
ations we have to �nd other networks. The most elegant and

the most eÆ
ient pra
ti
al designs are the two Bat
her networks [3℄. They have

the depth very 
lose to

1

2

log

2

n and are based respe
tively on the odd-even

and bitoni
 merging networks. Note that the Bat
her networks beat the AKS

network for the inputs of size n � 2

1000

. Sin
e 2

1000

is mu
h bigger than the

estimated number of the parti
les in the universe, for any potential appli
ation

the AKS network is inferior to the Bat
her networks.

1.2 Periodi
 networks

We 
an also 
onsider so 
alled periodi
 networks. Periodi
 networks perform

their 
omputation in many iterations. During ea
h iteration a sequen
e stored in

the registers is taken as an input 
on�guration of the network and is repla
ed by

the output 
on�guration 
omputed by the network for this input. Thus although

the 
omputation time is t = dk, where k is the number of iterations and d is

the depth of the network, the number of 
omparators is at most dn=2, where n

is the input size (sin
e ea
h layer 
an 
ontain at most bn=2
 
omparators). The

examples of the periodi
 networks are

� the DPSR network by M. Dowd, Y. Perl, M. Saks, and L. Rudolph [5℄, of

depth logn that sorts in logn iterations,

4



� the network by M. Kuty lowski, K. Lory�s, B. Oesterdiekho�, and R. Wanka

[10℄ of a 
onstant depth that sorts in O(log

2

n) iterations (obtained by so


alled periodi�
ation of the AKS network),

� the odd-even transposition network of depth 2 that sorts in n=2 iterations,

� the network by I. D. S
herson, S. Sen, and A. Shamir [14℄ of depth 2

p

n

that sorts in logn iterations,

� the S
hwiegelshohn network [16℄ of depth 8 that sorts in O(

p

n logn) it-

erations.

The last three networks are very suitable for the VLSI te
hnology, sin
e the

area of the layout of their underlying ar
hite
ture is proportional to the size of

the input. There are also known periodi
 merging networks of a 
onstant depth

by M. Kuty lowski, K. Lory�s, B. Oesterdiekho� [9℄ that merge two sequen
es in

O(log n) iterations.

1.3 Outline of the thesis

In this thesis the following results are presented:

� In Se
tion 3, for an arbitrary 
onstant k we present a periodi
 network

of a 
onstant depth that sorts in O(n

1=k

) iterations. The 
onstru
tion of

this network is based on the (";m)-blo
ks whi
h are a generalization of

the odd-even transposition network, where single registers are repla
ed by

the groups of m registers, and 
omparators are repla
ed by the so 
alled

"-halvers (used originally in the 
onstru
tion of the AKS network). This

network (presented in [8℄) was asymptoti
ally the best 
onstant depth

network until the invention of the networks from [10℄.

� In Se
tion 4, we present a 
omparator network that sorts any sequen
e

that di�ers from some sorted sequen
e at at most k positions (a so 
alled k-

disturbed sequen
e). The depth of the network is 4 logn+O(log

2

k log logn),

and hen
e for k = o

�

2

p

logn= log log n

�

, the depth of the network is 4 logn+

o(log n). Thus the 
onstant in front of logn is mu
h smaller than the 
on-

stant in the asymptoti
ally optimal AKS sorting network.

� Se
tion 5 presents a periodi
 
orre
tion network of a 
onstant depth that

sorts any k-disturbed sequen
e of length n in O(log n+ k) iterations.

Results of Se
tion 3 are due to M. Kuty lowski, G. Sta
howiak and myself.

These results have been published in [8℄.

The result of Se
tion 4 is a re�nement of the 
onstru
tion from [6℄ and has

been been published as a joint work by M. Kuty lowski, M. Piotr�ow and myself

in [7℄.

The results of the Se
tion 5 are unpublished yet. They are inspired by the

idea presented by Grzegorz Sta
howiak of adding the ba
k-jump 
omparators

to the network H

l

of the Subse
tion 5.1.
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2 Preliminaries

In this se
tion we introdu
e formal de�nitions of the basi
 
on
epts used in

the remaining part of the thesis. We also present here some simple but useful

lemmas that simplify the analysis of the 
omparator network 
omputations.

Many 
onstru
tions, de�nitions and proofs in this thesis might be regarded

at �rst by the reader as too formal. However, 
omparator networks require very

stri
t and pre
ise de�nitions, sin
e in many 
ases even small 
hanges in their


onstru
tions may 
ause serious deterioration of their performan
e.

We assume that all logarithms (unless stated otherwise) are to the base of

two.

De�nition 2.1 Let P = (P

1

; : : : ; P

k

) and Q = (Q

1

; : : : ; Q

l

) be two arbitrary

sequen
es. By PQ we denote the sequen
e (P

1

; : : : ; P

k

; Q

1

; : : : ; Q

l

) (
on
atena-

tion of P and Q). By P

0

we denote an empty sequen
e, and for i > 0, P

i

denotes P

i�1

P .

De�nition 2.2 Let X be a �nite ordered set. Let x 2 X. Then the rank of x

in X is a positive integer r su
h that r = jfy 2 X j y � xgj.

In the following de�nitions we formalize the notion of 
omparator network

introdu
ed in Se
tion 1. We will identify the registers by their labels that are

integer numbers. The 
omparator is identi�ed by the pair of registers that it


ompares and the layer is a subset of 
omparators.

De�nition 2.3 Let R be any �nite subset of positive integers. We 
all a subset

L of R�R a layer over R if and only if:

� for ea
h (i; j) 2 L, i 6= j, and

� ea
h element of R is 
ontained by at most one ordered pair in L.

1

The elements of the layers are 
alled 
omparators.

De�nition 2.4 Let n and d be any positive integers. Let R be a set of n integers

(we 
all them registers). Let L = (L

1

; L

2

; : : : ; L

d

) be a sequen
e of layers over

S. Then by CN(n; d;R; L) we denote the 
omparator network of input size n,

depth d on the set of registers R with the sequen
e of layers L. For 1 � i � n,

by R

i

we denote the element of R with a rank i (i.e. the ith register of R).

De�nition 2.5 Let X be any ordered set. Let R be a set of n registers. Then

any fun
tion 
 : R ! X is 
alled a 
on�guration of R over X. The sequen
e

(
(R

1

); : : : ; 
(R

n

)) is 
alled a 
on�guration sequen
e of R. We say that the reg-

ister R

i


ontains the value 
(R

i

). For any subset of registers S

0

� fR

1

; : : : ; R

n

g

for any x 2 X, we say that 
 has k values x in S

0

if and only if jfR

i

2

S

0

j 
(R

i

) = xgj = k.

Let S � fR

1

; : : : ; R

n

g. We 
all a 
on�guration 


0

: S ! X a S-restri
tion

of 
 if and only if 


0

(R

i

) = 
(R

i

) for ea
h R

i

2 S.

1

In another 
ontext we 
all su
h sets mat
hings.

6



De�nition 2.6 Let X be any ordered set. Let R be a set of n registers. Let 


be any 
on�guration of R over X. Let L be a layer over fR

1

; : : : ; R

n

g. Then

by L(
) we denote the 
on�guration 


0

of R over X obtained after exe
uting


omparators from L:

� for ea
h (i; j) 2 L, 


0

(i) = minf
(i); 
(j)g and 


0

(j) = maxf
(i); 
(j)g (we

say that 
omparator (i; j) 
ompares the registers i and j in the layer L),

� for ea
h r 2 R su
h that there is no pair 
ontaining r in L, 


0

(r) = 
(r).

We 
all L(
) a result of appli
ation of L on 
.

De�nition 2.7 Let X be an ordered set. Let R be a set n of registers. Let

L = (L

1

; : : : ; L

d

) be a sequen
e of layers over R. Let 
 be any 
on�guration

of R over X. For 0 � i � d we de�ne a sequen
e of 
on�gurations L(i; 
) as

follows:

� L(0; 
) = 
, and

� for 1 � i � d, L(i; 
) = L

i

(L(i� 1; 
)):

We 
all the sequen
e (L(0; 
); : : : ; L(d; 
)) a 
omputation tra
e of L on 
. We

also use L(
) to denote L(d; 
).

The following de�nitions introdu
e notations used for 
onstru
ting new net-

works from already de�ned layers.

De�nition 2.8 Let S and S

0

be two �nite subsets of positive integers su
h that

jSj = jS

0

j. Let f be any bije
tion between S and S

0

. Let L be a layer over S.

Then the f -mapping of L is the layer L

0

over S

0

de�ned as follows:

L

0

= f(f(i); f(j)) j (i; j) 2 Lg:

If L is a sequen
e of layers (L

1

; : : : ; L

d

) over S, then the f-mapping of L is

a sequen
e L

0

= (L

0

1

; : : : ; L

0

d

), where L

0

i

is an f-mapping of L

i

.

De�nition 2.9 Let S and S

0

be any �nite subsets of positive integers. Let L

be a layer over S. Then the S

0

-restri
tion of L is the layer L

0

over S

0

de�ned

as follows:

L

0

= f(i; j) 2 L j i; j 2 S

0

g:

If L is a sequen
e of layers (L

1

; : : : ; L

d

) over S, then the S

0

-restri
tion of L

is a sequen
e L

0

= (L

0

1

; : : : ; L

0

d

), where L

0

i

is an S

0

-restri
tion of L

i

.

De�nition 2.10 Let S and S

0

be two subsets of registers. Let d � 1. Let

L = (L

1

; : : : ; L

d

) and L

0

= (L

0

1

; : : : ; L

0

d

) be the sequen
es of layers over S and

S

0

respe
tively, su
h that ea
h L

i

[L

0

i

is a layer over S [S

0

. Then the union of

L and L

0

(denoted by L [ L

0

) is the sequen
e of layers (L

1

[ L

0

1

; : : : ; L

d

[ L

0

d

).
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De�nition 2.11 A 
omparator (r

1

; r

2

) is 
alled a standard 
omparator if and

only if r

1

< r

2

. A layer L is 
alled a standard layer if and only if it 
ontains

only standard 
omparators. A network CN(n; d;R; L) is a standard network if

and only if L is the sequen
e of standard layers.

All the 
omparator networks 
onsidered in the following se
tions are stan-

dard networks.

We will frequently use the following trivial but useful observation.

Lemma 2.12 � If L is a standard layer, then any S-restri
tion of L is also

a standard layer.

� If the union of standard layers is a layer, then it is a standard layer.

� If L is a standard layer over S and f : S ! S

0

is an in
reasing one to one

fun
tion, then the f-mapping of L is a standard layer over S

0

.

The following simple lemma and 
orollary state that we 
an 
lip a standard

network to an arbitrary size preserving many of its properties.

Lemma 2.13 Let R be a set of n registers. Let m � n and R

0

= fR

1

; : : : ; R

m

g.

Let L be a standard layer over R and let L

0

be the R

0

-restri
tion of L. Let 


be a 
on�guration of R su
h that 
(R

i

) = 


max

, for ea
h i > m, where 


max

=

maxf
(r)jr 2 Rg. Let 


0

be the R

0

-restri
tion of 
. Then

1. L

0

(


0

) is an R

0

-restri
tion of L(
), and

2. L(
)(R

i

) = 


max

for ea
h i > m.

Proof. Let r 2 R

0

. If there is no 
omparator in L 
ontaining r, then

L

0

(


0

)(r) = 


0

(r) = 
(r) = L(
)(r). If there is r

0

2 R

0

su
h that

(minfr; r

0

g;maxfr; r

0

g) 2 L;

then

(minfr; r

0

g;maxfr; r

0

g) 2 L

0

and hen
e L

0

(


0

)(r) = L(
)(r). If there is r

0

2 R nR

0

su
h that (r; r

0

) 2 L, then


(r

0

) = 


max

and hen
e L

0

(


0

)(r) = 
(r) = L(
)(r).

The se
ond property follows immediately from the fa
t that for i > m,


(R

i

) = 


max

and that any register 
onne
ted by a 
omparator to R

i

must

either be the �rst register of the 
omparator or 
ontain also the value 


max

in


on�guration 
. 2

An immediate 
onsequen
e of Lemma 2.13 is the following useful 
orollary.

Corollary 2.14 Let R, R

0

, 
, 


0

and 


max

be de�ned as in Lemma 2.13. Let L

be a sequen
e of standard layers over S, let L

0

be an S

0

-restri
tion of L. Then

1. L

0

(


0

) is an R

0

restri
tion of L(
), and

8



L L

c c’

d d’

k -threshold

k -threshold

Figure 3: Lemma 2.18.

2. L(
)(R

i

) = 


max

for ea
h i > m.

De�nition 2.15 Let X be an ordered set and let R be a set of n registers. A net-

work CN(n; d;R; L) sorts a 
on�guration 
 of R (and the sequen
e (
(R

1

); : : : ; 
(R

n

)))

if and only if the sequen
e (L(
)(R

1

); : : : ; L(
)(R

n

)) is a nonde
reasing sequen
e.

A network N = CN(n; d;R; L) is 
alled a sorting network over X if and

only if for all 
on�gurations 
 : R! X, network N sorts 
.

Any sorting network 
an be transformed into a standard sorting network of

the same depth and with the same number of 
omparators in ea
h layer (see

exer
ise 16 on page 239 in [11℄).

The following lemma from [11℄, 
alled Zero-One Prin
iple and is a funda-

mental tool for analyzing 
omparator networks.

Lemma 2.16 A 
omparator network N is a sorting network over any ordered

set X if and only if N is a sorting network over f0; 1g.

We 
all the 
on�gurations over f0; 1g zero-one 
on�gurations.

Zero-One Prin
iple is a 
onsequen
e of a slightly more general fa
t, whi
h

we present below.

De�nition 2.17 Let X be an ordered set. Let R be a set of n registers. Let 


be a 
on�guration of R over X and let Y be a set of values of 
. For integer k

a k-threshold of 
 is a 
on�guration 


0

of R over f0; 1g su
h that:




0

(R

i

) =

�

0 if rank of 
(R

i

) in Y is less than k,

1 otherwise.

Lemma 2.18 Let X be an ordered set. Let R be a set of n registers. Let 
 be

a 
on�guration of R over X. Let k be any integer and let 


0

be a k-threshold of


. Let L be a layer over R. Let d = L(
) and let d

0

be a k-threshold of d. Then

d

0

= L(


0

). (See Fig. 3.)

Proof. Let Y be a set of values of 
. (Y is also a set of values of d.) Suppose

that d

0

6= L(


0

). Then there is an index i su
h that d

0

(R

i

) 6= L(


0

)(R

i

), that is,

either d

0

(R

i

) = 0 and L(


0

)(R

i

) = 1 or d

0

(R

i

) = 0 and L(


0

)(R

i

) = 1. In the �rst


ase the rank of d(R

i

) = L(
)(R

i

) in Y is less than k. But L(


0

)(R

i

) = 1 implies

9



that 


0

(R

i

) = 1 or there is a 
omparator (R

j

; R

i

) in L where 


0

(R

j

) = 1. Thus

the rank of 
(R

i

) in Y is at least k or L(
)(R

i

) is maximum of the two values,

with at least one of them having the rank greater or equal k. Hen
e the rank of

L(
)(R

i

) must be greater or equal k. Contradi
tion. The 
ase d

0

(R

i

) = 0 and

L(


0

)(R

i

) = 1 is analogous. 2

Lemma 2.19 Let X be an ordered set. Let R be a set of n registers. Let 
 be

a 
on�guration of R over X and Y be the set of values of 
. For 1 � k � n,

let 


k

be k-threshold of 
. Then there is no other 
on�guration 


0

with the set of

values Y su
h that for ea
h k, 


k

is a k-threshold of 


0

.

Proof. Suppose that there is su
h a 
on�guration 


0

, 


0

6= 
. Then 
(R

i

) 6=




0

(R

i

), for some i. The rank r of 
(R

i

) is di�erent from the rank r

0

of 


0

(R

i

) in

Y , sin
e Y is an ordered set. Consider the 
ase r < r

0

(equivalent to r+1 � r

0

).

Then 


r+1

(R

i

) = 0 whi
h is a 
ontradi
tion to 


r+1

being a (r+ 1)-threshold of




0

. The 
ase r

0

< r is analogous. 2

Corollary 2.20 Let X, R, 
, Y and 


k

be de�ned as in Lemma 2.19. Then

there is no other 
on�guration 


0

with the set of values Y su
h that for ea
h

2 � k � jY j, 


k

is a k-threshold of 


0

.

Proof. It follows from Lemma 2.19 and from the fa
t that 


1

is a 
onstant

fun
tion equal to 1 and, for k > jY j, 
on�gurations 


k

are 
onstant fun
tions

equal to 0, and the 
onstant k-thresholds do not impose any restri
tions on the


on�guration. 2

Lemma 2.21 Let X be an ordered set. Let R be a set of n registers. Let 
 and




0

be 
on�gurations of R over X with the same set of values and with ea
h value

o

uring as many times in 
 as in 


0

. For 1 � k � n, let 


k

(respe
tively 


0

k

) be

a k-threshold of 
 (respe
tively 


0

). Let L be any layer over R. Then 


0

= L(
)

if and only if for ea
h k, 1 � k � n, 


0

k

= L(


k

).

Proof. If 


0

= L(
), then by Lemma 2.18, for ea
h k, 


0

k

= L(


k

). If for ea
h

k, 1 � k � n, 


0

k

= L(


k

), then by the fa
t that ea
h L(


k

) is a k-threshold of

L(
) and by Lemma 2.19 we have 


0

= L(
). 2

The following lemma is a simple but useful modi�
ation of the zero-one

prin
iple.

Lemma 2.22 Let X be an ordered set. Let R be a set of n registers. Let 
 and




0

be 
on�gurations of R over X. For 1 � k � n, let 


k

(respe
tively 


0

k

) be a

k-threshold of 
 (respe
tively 


0

). Let L = (L

1

; : : : ; L

d

) be a sequen
e of layers

over R. Then 


0

= L(d; 
) if and only if for ea
h k, 1 � k � n, 


0

k

= L(d; 


k

).

Proof. Immediate 
onsequen
e of Lemma 2.21 2

The following de�nition is spe
i�
 for the zero-one 
on�gurations.
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De�nition 2.23 Let R be a set of n registers. Let 
 be a 
on�guration of R

over f0; 1g. Let p > 0. We say that 
 is p-dirty if and only if there is an index

i su
h that for all 1 � j � i� 1, 
(R

j

) = 0 and for all i+ p � j � n, 
(R

j

) = 1.

The subset of registers that are between the �rst register 
ontaining one and the

last register 
ontaining zero is 
alled dirty region of 
.
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Figure 4: The n-odd-even transposition network for n = 7. The �rst layer is

drawn with solid lines and the se
ond layer is drawn with dashed lines.

3 Periodi
 Sorting Networks

In this se
tion for arbitrary 
onstant k, we present a periodi
 network of a 
on-

stant depth that sorts a sequen
e of n elements in O(n

1=k

) iterations. The 
on-

stru
tion of the network is based on the so 
alled (";m)-blo
ks. An (";m)-blo
k

is a generalization of the well known odd-even transposition sorting network

where the registers are repla
ed by the groups of m registers and the 
ompara-

tors are substituted by the so 
alled "-halvers.

3.1 Periodi
 Networks. Preliminaries

Re
all that a periodi
 network (Se
tion 1.2) pro
esses the data stored in registers

in many iterations. Here we spe
ify more formally the notion of a periodi


sorting network.

De�nition 3.1 Let N be a 
omparator network CN(n; d;R; L). N is a pe-

riodi
 sorting network if and only if for some positive integer t the network

CN(n; td;R; L

t

) is a sorting network. We say that N sorts in t iterations.

3.1.1 Odd-even transposition network

The simplest periodi
 sorting network is the following one:

De�nition 3.2 Let R = f1; 2; : : : ; ng. An n-odd-even transposition network

(see Fig. 4) is a network CN(n; 2; R; (L

1

; L

2

)), where

L

1

= f(i; i+ 1) j 1 � i < n and i is oddg

and

L

2

= f(i; i+ 1) j 2 � i < n and i is eveng:

Let us re
all the following well known fa
ts (see [11℄ and [4℄):

Lemma 3.3 [11℄ The n-odd-even transposition network sorts in dn=2e itera-

tions.

Lemma 3.4 [4℄ If a periodi
 standard network N on registers f1; : : : ; ng 
on-

tains all 
omparators of the n-odd-even transposition network, then for ea
h

k � n, N sorts ea
h k-dirty 
on�guration in at most k iterations.

12



3.1.2 "-halvers

In the 
onstru
tion of our periodi
 networks we will use 
omparator networks


alled "-halvers. The notion of "-halver was introdu
ed in [1℄. Informally, halv-

ing is the task of moving the greater values to the se
ond half of the registers

and the smaller values to the �rst half of registers, so that no value in the �rst

half is bigger than any value in the se
ond half. The ordering of the values inside

a half does not matter. If we 
onsider only zero-one 
on�gurations of the set of

registers R of size 2m with x

0

zeroes and x

1

ones, then the halver either moves

all the ones to R

m+1

; : : : ; R

2m

or all the zeroes to R

1

; : : : ; R

m

. The exa
t halver

must have a depth 
(logm). This follows from the Alekseyev's lower bound

(n � t)dlog(t + 1)e on the number of 
omparators for sele
ting t = m smallest

elements in the sequen
e of length n = 2m. (See [11℄, page 234.)

Ajtai, Komolos and Szemeredi [1℄ introdu
ed so 
alled "-halvers. The dif-

feren
e between halvers and "-halvers is that in the later 
ase we demand that

"-halver leaves either at most "x

0

zeroes in R

m+1

; : : : ; R

2m

(if x

0

� x

1

), or at

most "x

1

ones in R

m+1

; : : : ; R

2m

(if x

1

� x

0

) instead of moving all zeroes or

ones to the proper half. It is surprising that, for " > 0, there exist "-halvers of

the depth independent on the number of their registers. This led to 
onstru
-

tion of the famous AKS network. The 
onstru
tion of "-halvers is based on the

random bipartite graphs 
alled expanders. The tradeo� between the depth of

"-halver and the value ", and their random stru
ture, make the networks based

on "-halvers rather impra
ti
al. However we use them in our 
onstru
tion to

obtain good asymptoti
al estimation of the runtime.

Below we introdu
e a more formal de�nition of an "-halver. First we de�ne

auxiliary fun
tions:

De�nition 3.5 Let " 2 [0;

1

2

) and let m > 0. We de�ne two fun
tions over

[0; 2m℄ (see Fig. 5):

f

";m

(x) =

�

"x for x � m;

m� (1� ")(2m� x) for x > m;

g

";m

(x) =

�

(1� ")x for x � m;

m� "(2m� x) for x > m:

Let us state the following obvious properties:

Lemma 3.6 f

";m

is a 
onvex fun
tion. The fun
tions f

";m

and g

";m

are non-

de
reasing, 
ontinuous, and for 0 � x � 2m the following holds:

� 0 � f

";m

(x) � m, 0 � g

";m

(x) � m,

� f

";m

(x) � x, g

";m

(x) � x,

� f

";m

(x) + g

";m

(x) = x,

� f

";m

(x) = m� g

";m

(2m� x),

� g

";m

(x) = m� f

";m

(2m� x).
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Figure 5: The fun
tions f

";m

and g

";m

De�nition 3.7 Let " � 0. Let n be an even positive integer. Let R = f1; : : : ; ng

be a set of registers. A 
omparator network N = CN(n; d;R; L) is an "-halver

on R if the following holds. For ea
h 
on�guration 
 of R over f0; 1g su
h

that jfr 2 R j 
(r) = 1gj = x the 
on�guration 


0

= L(d; 
) has the following

properties:

� jfr 2 R j r � n=2; 


0

(r) = 1gj � f

";n=2

(x), and

� jfr 2 R j r > n=2; 


0

(r) = 1gj � g

";n=2

(x).

Note that by the last equality stated in Lemma 3.6 "-halver is symmetri
al

in the following sense:

Lemma 3.8 Let N be a "-halver on R = f1; : : : ; ng registers for some even n >

0. Let 


0

be an output 
on�guration of N for some input zero-one 
on�guration


 su
h that jfr 2 R j 
(r) = 0gj = x. Then:

� jfr 2 R j r > n=2; 


0

(r) = 0gj � f

";n=2

(x), and

� jfr 2 R j r � n=2; 


0

(r) = 0gj � g

";n=2

(x).

The following lemma is due to Ajtai, Komolos and Szemeredi and states the

key property of "-halvers:

Lemma 3.9 [1℄ For ea
h " > 0 there exist a 
onstant positive integer d

"

, su
h

that for ea
h even positive integer n, there is an "-halver on f1; : : : ; ng of depth

d

"

.

3.1.3 (";m)-blo
ks

Below we use "-halvers to de�ne (";m)-blo
ks that are the basi
 elements used

in the 
onstru
tion of our network. An (";m)-blo
k 
an be presented as the

odd-even transposition network, where ea
h register is repla
ed by a group of m

registers, and ea
h 
omparator is repla
ed by an "-halver on the 
orresponding

pairs of groups.
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K 1 K 2 K 3 K 6K 5K 4

ε -halver ε -halver ε -halver

K 1 K 2 K 3 K 6K 5K 4

ε -halver ε -halver

(a)

(b)

Figure 6: The upper (a) and the lower (b) part of an (";m; n)-blo
k, for n = 6m.

De�nition 3.10 Let " > 0. Let m and n be positive integers su
h that n = km

for some integer k � 2. Let R = f1; : : : ; ng. LetN = CN(2m; d

"

; f1; : : : ; 2mg; L)

be an "-halver. For 1 � j � k let K

j

= f(j � 1)m + 1; : : : ; jmg and let

f

j

: f1; : : : ; 2mg ! K

j

[K

j+1

be a fun
tion su
h that f

j

(i) = (j � 1)m+ i. We


all a network M = CN(n; 2d

"

; R; L

1

L

2

) an (";m; n)-blo
k (or shortly (";m)-

blo
k on R) if and only if for ea
h t, 1 � t � d

"

(see Fig. 6):

� L

1

is the union of the f

j

-mappings of L for all odd j, 1 � j < k,

� L

2

is the union of the f

j

-mappings of L for all even j, 2 � j < k.

We 
all the subsequen
e of layers L

1

an upper part of the (";m; n)-blo
k

and the subsequen
e of layers L

2

a lower part of the (";m; n)-blo
k. We 
all the

subset K

j

the jth m-bu
ket of R.

If n is not a multiple of m, then by (";m; n)-blo
k we mean a network

CN(n; 2d

"

; (1; : : : ; n); L

0

), where L

0

is the f1; : : : ; ng-restri
tion of the sequen
e

of layers of the (";m; dn=mem)-blo
k.

Note that a

ording to De�nition 3.10 the n-odd-even transposition network

is an (0; 1; n)-blo
k but its depth is 2 instead of d

"

.

3.2 Properties of the (";m)-blo
ks

In this se
tion we prove Lemma 3.23, key property of (";m)-blo
ks. It states

that an (";m; n)-blo
k shrinks the dirty region to O(m logn) registers in O(n=m)

iterations. We 
ommen
e with some auxiliary lemmas and de�nitions.

De�nition 3.11 Let a = (a

1

; : : : ; a

l

) be a ve
tor of real numbers. For 1 �

i � l, hd

i

(a) (a head of a) denotes the pre�x sum

P

i

j=1

a

j

. (We assume that

hd

i

(a) = 0 for i < 1 and hd

i

(a) = hd

l

(a) for i > l). For 1 � i � l, tl

m;i

(a)

(a tail of a) denotes the sum

P

l

j=i

(m� a

j

). (We assume that tl

m;i

(a) = 0 for

i > l, and tl

m;i

(a) = tl

m;1

(a) for i < 1).
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De�nition 3.12 Let a = (a

1

; : : : ; a

l

), b = (b

1

; : : : ; b

l

), where a

i

; b

i

2 [0;m℄ for

1 � i � l. We say that b dominates a (denoted by a � b) if and only if

hd

l

(a) = hd

l

(b) and hd

k

(b) � hd

k

(a), for every k, 1 � k � l.

Note that a � b if and only if tl

m;1

(a) = tl

m;1

(b) and tl

m;k

(b) � tl

m;k

(a) for

every 1 � k � l.

The following properties follow dire
tly from the de�nition.

Lemma 3.13 The relation � is a partial order on [0;m℄

l

.

Lemma 3.14 Let L be any sequen
e of standard layers on R = f1; : : : ; lmg.

Let 
 be a 
on�guration of R over f0; 1g. Let 


0

= L(
). Let K

i

denote the ith

m-bu
ket of R. Let x = (x

1

; : : : ; x

l

) and y = (y

1

; : : : ; y

l

) be two ve
tors su
h

that for ea
h i, 1 � i � l,

� x

i

= jfj j j 2 K

i

; 
(j) = 1gj and

� y

i

= jfj j j 2 K

i

; 


0

(j) = 1gj.

Then x � y.

De�nition 3.15 Let " � 0. Let m > 0. Let a = (a

1

; : : : ; a

l

) be a ve
tor of

real numbers su
h that a

i

2 [0;m℄ for all i. By N

";m

(a) we denote a ve
tor

x = (x

1

; : : : ; x

l

) su
h that for ea
h odd j, 1 � j < l:

� x

j

= f

";m

(a

j

+ a

j+1

), and

� x

j+1

= g

";m

(a

j

+ a

j+1

) and

� if l is odd, then x

l

= a

l

.

By P

";m

(a) we denote a ve
tor x = (x

1

; : : : ; x

l

) su
h that for ea
h even j,

2 � j < l:

� x

1

= a

1

, and

� x

j

= f

";m

(a

j

+ a

j+1

), and

� x

j+1

= g

";m

(a

j

+ a

j+1

) and

� if l is even, then x

l

= a

l

.

Let us 
omment the above de�nition. Let a = (a

1

; : : : ; a

l

) be a sequen
e

su
h that a

i

is the number of ones in K

i

. Assume that an (";m)-blo
k exe
utes

its upper part. Consider the number of ones that remain in K

i

for i odd. By the

de�nition of an "-halver, it is upper bounded by f

";m

(a

i

+ a

i+1

). The number

of ones in K

i+1

is at that moment at least g

";m

(a

i

+ a

i+1

). So we may regard

N

";m

(a) as a pessimisti
 estimate on the pla
ement of ones.

Lemma 3.16 Let x

1

and x

2

be two ve
tors from [0;m℄

l

su
h that, for 1 � i �

l, hd

i

(x

1

) � hd

i

(x

2

): Then, for 1 � i � l, hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

))

(respe
tively hd

i

(P

";m

(x

1

)) � hd

i

(P

";m

(x

2

)) ).
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Proof. If i is even, then hd

i

(N

";m

(x

1

)) = hd

i

(x

1

) and hd

i

(N

";m

(x

2

)) =

hd

i

(x

2

). If i is odd, then

hd

i

(N

";m

(x

1

)) = hd

i�1

(x

1

) + f

";m

(x

1;i

+ x

1;i+1

)

= hd

i+1

(x

1

) � g

";m

(x

1;i

+ x

1;i+1

)

and

hd

i

(N

";m

(x

2

)) = hd

i�1

(x

2

) + f

";m

(x

2;i

+ x

2;i+1

)

= hd

i+1

(x

2

) � g

";m

(x

2;i

+ x

2;i+1

):

If x

1;i

+ x

1;i+1

� x

2;i

+ x

2;i+1

, then by the fa
t that

hd

i�1

(N

";m

(x

1

)) � hd

i�1

(N

";m

(x

2

))

and that f

";m

is nonde
reasing fun
tion we have

hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

)):

If x

1;i

+ x

1;i+1

> x

2;i

+ x

2;i+1

then by the fa
t that

hd

i+1

(N

";m

(x

1

)) � hd

i+1

(N

";m

(x

2

))

and that g

";m

is nonde
reasing fun
tion we have

hd

i

(N

";m

(x

1

)) � hd

i

(N

";m

(x

2

)):

The proof of the 
laim for P

";m

is analogous.

Lemma 3.17 Let x and y be two ve
tors from [0;m℄

l

su
h that x � y. Then

N

";m

(x) � N

";m

(y) and P

";m

(x) � P

";m

(y).

Proof. The lemma follows dire
tly from Claim 3.16. 2

Lemma 3.18 Let R = f1; : : : ; lmg be a sequen
e of registers. Let L be an upper

(respe
tively a lower) part of the (";m)-blo
k on R. Let 
 be any 
on�guration

of R over f0; 1g. Let 


0

= L(
). Let x = (x

1

; : : : ; x

l

) and y = (y

1

; : : : ; y

l

) be

ve
tors su
h that, for ea
h i, 1 � i � l,

x

i

= jfj j j 2 K

i

; 
(j) = 1gj

and

y

i

= jfj j j 2 K

i

; 


0

(j) = 1gj;

where K

i

is ith m-bu
ket of R. Let x

0

2 [0;m℄

l

be any ve
tor su
h that x

0

� x.

Then N

";m

(x

0

) � y (respe
tively P

";m

(x

0

) � y).
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Proof. We prove the lemma only for the upper part of the (";m)-blo
k and

N

";m

. The lemma for the lower part and P

";m

is analogous. By Lemma 3.17,

N

";m

(x

0

) � N

";m

(x). Thus it is suÆ
ient to show that N

";m

(x) � y. If i is

even or i = l, then hd

i

(N

";m

(x)) = hd

i

(x) = hd

i

(y). If i is odd and i < l, then

hd

i

(N

";m

(x)) = hd

i�1

(x) + f

";m

(x

i

+ x

i+1

) = hd

i+1

(x) � g

";m

(x

i

+ x

i+1

). On

the other hand, by the fa
t that there is "-halver on the K

i

[K

i+1

in the upper

part of (";m)-blo
k,

hd

i

(y) � hd

i�1

(y) + f

";m

(y

i

+ y

i+1

) = hd

i+1

(y) � g

";m

(y

i

+ y

i+1

):

Consider the 
ases x

i

+ x

i+1

� y

i

+ y

i+1

and x

i

+ x

i+1

< y

i

+ y

i+1

, in a similar

way as in the proof of Lemma 3.16:

� If x

i

+ x

i+1

� y

i

+ y

i+1

, then hd

i

(y) � hd

i�1

(y) + f

";m

(y

i

+ y

i+1

) �

hd

i�1

(x) + f

";m

(x

i

+ x

i+1

) = hd

i

(N

";m

(x)).

� If x

i

+ x

i+1

< y

i

+ y

i+1

, then hd

i

(y) � hd

i+1

(y) � g

";m

(y

i

+ y

i+1

) �

hd

i+1

(x) � g

";m

(x

i

+ x

i+1

) = hd

i

(N

";m

(x)).

Thus hd

i

(y) � hd

i

(N

";m

(x)). 2

De�nition 3.19 Let " � 0. Let m > 0. Let x 2 [0;m℄

l

. For integers t � 0 we

de�ne a sequen
e V

t

";m

(x) as follows:

� V

0

";m

(x) = x,

� V

t

";m

(x) = N

";m

(V

t�1

";m

(x)) for odd t � 1,

� V

t

";m

(x) = P

";m

(V

t�1

";m

(x)) for even t � 2.

(If t is not integer, then by V

t

";m

(x) we denote V

dte

";m

(x).)

Let x be the minimal ve
tor in [0;m℄

l

with the sum of 
oordinates equal to

the number of ones in some initial zero-one 
on�guration. We use the values

V

t

";m

(x) to estimate a ve
tor of the numbers of ones in the bu
kets of registers

after appli
ation of the layers 
ontaining an (";m)-blo
k. We assume that the

sequen
e of layers of the 
onsidered network is of the form XULY , where U

and L are the upper and lower parts of the (";m)-blo
k respe
tively, and X and

Y are arbitrary sequen
es of standard layers. We 
onsider the 
on�gurations

obtained after the whole iterations and after the XU parts of the iterations.

Lemma 3.20 Let R = f1; : : : ; lmg be a set of registers. Let U and L be respe
-

tively the upper and the lower part of an (";m)-blo
k on R. Let X and Y be any

sequen
es of standard layers over R. Let 
 be any 
on�guration of R over f0; 1g,

and let jfi j 
(i) = 1gj = km +m

0

, where k is an integer and 0 � m

0

< m. For

t � 0 let the sequen
e of 
on�gurations 


t

be de�ned as follows:

� 


0

= 
,

� 


t

= XU(


t�1

) for odd t � 1,
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� 


t

= LY (


t�1

) for even t � 2.

For ea
h t � 0, for 1 � i � l, let y

t;i

= jfj 2 K

i

j 
(j) = 1gj, where K

i

is the

ith m-bu
ket, and let y

t

= (y

t;1

; : : : ; y

t;l

). Let x = (x

1

; : : : ; x

l

) be a ve
tor su
h

that, for 1 � i � k, x

i

= m and x

k+1

= m

0

and for k + 1 < i � m, x

i

= 0.

Then for ea
h t � 0, V

t

";m

(x) � y

t

.

Proof. The ve
tor x is the minimal element in [0;m℄

l

in relation � su
h

that hd

l

equals km + m

0

. Thus x � y

0

. It follows by indu
tion from Lemmas

3.14 and 3.18 that V

t

";m

(x) � y

t

. 2

The proof of the following 
ombinatorial lemma (in
luded in Appendix A)

has been invented by Grzegorz Sta
howiak. Here we 
onsider only the values of

hd

i

(V

t

";m

(x)) and tl

m;t

(V

t

";m

(x)), where the ve
tor x is of the form (m)

k

(0)

l�k

(i.e. a minimal ve
tor with the sum of 
oordinates equal to km). The lemma

states that, for t = �l, the sum of the 
oordinates of the ve
tor V

t

";m

(x) that

are outside the last k + � log(lm) 
oordinates is less than one, where � and �

are 
onstant. That is, almost all the weight of the ve
tor is shifted to the last

k + � log(lm) 
oordinates. Su
h a ve
tor 
orresponds to an \almost" sorted


on�guration of zeroes and ones. The lemma also states analogous result for

the tail of the V

t

";m

(x).

Lemma 3.21 Let 0 � " <

1

3

. There exist 
onstants �, � su
h that, for ea
h

m > 0, for ea
h positive integers l and k, su
h that ml � 12 and k � l, for ea
h

ve
tor x = (m)

k

(0)

l�k

the ve
tor y = V

�l

";m

(x) has following properties:

� hd

bl�k�� log(lm)


(y) < 1, and

� tl

m;dl�k+� log(lm)e

(y) < 1.

Proof. See Appendix A. 2

Note that hd

bl�k�� log(lm)


(y) 
an be used to upper bound the number of

ones in the bu
kets K

1

through K

bl�k�� log(lm)


. Sin
e the last number is non-

negative integer, it must be zero if hd

bl�k�� log(lm)


(y) < 1. For this reason

estimations of the form hd

bl�k�� log(lm)


(y) < 1 and tl

m;dl�k+� log(lm)e

(y) < 1

are all we need.

In Lemma 3.21 we assume that the number of ones is a multiple of m. This


an be easily generalized to the 
ase where the number of ones is arbitrary:

Corollary 3.22 Let ", �, �, m, and l be as in Lemma 3.21. Let k be a non-

negative integer, k < l. Let x = (m)

k

(m

0

)(0)

l�k�1

, where 0 � m

0

� m. Then

ve
tor y = V

�l

";m

(x) has the following properties:

� hd

bl�k�1�� log(lm)


(y) < 1, and

� tl

m;dl�k+� log(lm)e

(y) < 1.

Proof. The 
orollary follows from Lemma 3.21 and from the fa
t that for

all t � 0, for 1 � i � l,

hd

i

(V

t

";m

(x)) � hd

i

(V

t

";m

((m)

k+1

(0)

l�k�1

)) (1)
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and

tl

m;i

(V

t

";m

((m)

k

(0)

l�k

)) � tl

m;i

(V

t

";m

(x)):

The �rst inequality (1) follows by indu
tion on t from Lemma 3.16. The

se
ond inequality 
an be shown in a similar way. 2

Lemma 3.23 Let 0 < " <

1

3

. Let R = f1; : : : ; ng be a sequen
e of registers.

Let M = CN(n; d;R; L) be an (";m)-blo
k. Let 
 be a mp-dirty 
on�guration of

R, with p su
h that m(p + 1) � 12. Let X and Y be two sequen
es of standard

layers. There exist two positive values �

0

and �

0

that depend only on " su
h that

the 
on�guration 


0

= (XLY )

d�

0

pe

(
) is md�

0

log((p + 1)m)e-dirty.

Proof. Let K

j

be the �rst bu
ket of M that 
ontains a one. Then K

j+p

is the last bu
ket that may 
ontain a zero. Let S =

S

j�i�j+p

K

i

. Let L

0

(respe
tively, X

0

and Y

0

) be a S-restri
tion of L (respe
tively, of X and Y ). All


omparators that are in XLY are standard 
omparators, thus all 
omparators

that are not in X

0

L

0

Y

0

do not 
hange the values in their registers and the S-

restri
tion of 


0

is equal to (X

0

L

0

Y

0

)

d�pe

(


S

), where 


S

is the S-restri
tion of 
.

Note that L

0

is a sequen
e of layers of an (";m)-blo
k on the registers of S. Let

L

0

1

be the upper part of L

0

and L

0

2

be the lower part of L

0

.

Let 


0

= 


S

and for odd t � 1, let 


t

= X

0

L

0

1

(


t�1

) and let 


t+1

= L

0

2

Y

0

(


t

).

For t � 0, let x

t

= (x

t;1

; : : : ; x

t;p+1

) be a ve
tor su
h that x

t;i

is the number of

ones in K

j+i�1

in 
on�guration 


t

. Let q =

P

l

i=1

x

0;i

(i.e. q is the number of

ones in 


S

). Let k = bq=m
 and m

0

= q�km. We de�ne x

0

= (m)

k

(m

0

)(0)

l�k�1

and for t � 0 let x

0

t

= V

t

";m

(x

0

). That is, x

0

is the smallest ve
tor with respe
t

to � that represents a 
on�guration with the same number of ones as 


S

.

It follows from Lemma 3.20 that for ea
h t � 0, x

0

t

� x

t

. That means that

for ea
h i, 1 � i � l,

hd

i

(x

0

t

) � hd

i

(x

t

)

and

tl

m;i

(x

0

t

) � tl

m;i

(x

t

):

By Corollary 3.22, there exist two 
onstants � and �, su
h that

hd

bp�k�� log((p+1)m)


(x

0

d�pe

) < 1

and

tl

m;dp+1�k+� log((p+1)m)e

(x

0

d�pe

) < 1:

Thus

hd

bp�k�� log((p+1)m)


(x

d�pe

) = 0

and

tl

m;dp+1�k+� log((p+1)m)e

(x

d�pe

) = 0;

sin
e they must be nonnegative integers. Note that

dp+ 1� k+� log((p+ 1)m)e�bp� k�� log((p+ 1)m)
 � 2 + 2� log((p+ 1)m):

Thus we 
an 
hoose the 
onstants �

0

and �

0

as respe
tively � and 2� + 2. 2
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3.3 Periodi
 sorting network de�nition and analysis

The stru
ture of our network is following: The layers are divided into k + 1

groups, ea
h of them 
orresponding to an (";m

i

)-blo
k, for 
arefully 
hosen

sizes m

i

. The idea is that the 
omputation 
an be divided into virtual phases:

During Phase 1, we shrink the size of a dirty region to from n = m

1

n

1=k

to

m

2

n

1=k

. For this purpose we use (";m

1

)-blo
k as in Lemma 3.23 and disregard

in the analysis other layers. We only note that they are standard layers. Then

we start the se
ond virtual phase. For this purpose we 
onsider only the bu
kets

of the (";m

2

)-blo
k that interse
t the dirty region. Again we use Lemma 3.23 to

show that the size of dirty region is shrunk to m

3

n

1=k

. We iterate this approa
h

k times until we get a sequen
e that is O(log

k+1

n)-dirty. Then we apply odd-

even transposition sorting network as the last blo
k. This allows to �nish sorting

in the time proportional to the size of the last dirty region.

De�nition 3.24 Let 0 < " <

1

3

. Let �

0

be the 
onstant de�ned in Lemma 3.23.

Let k � 2 be a positive integer. For a positive integer n � 2

k+2

, we de�ne a

network I

";k;n

as a 
omparator network CN(n; 2kd

"

+ 2; f1; : : : ; ng; L), where

L = L

1

L

2

: : : L

k

L

k+1

, su
h that for ea
h i, 1 � i � k, L

i

is a sequen
e of layers

of (";m

i

)-blo
k on f1; : : : ; ng, where

� m

1

= dn

(k�1)=k

e, and

� for 2 � i � k, m

i

= dm

i�1

=n

1=k

ed�

0

log(2n)e,

and L

k+1

is a sequen
e of the two layers of n-odd-even transposition network.

Note that for k � 2 and n � 2

k+2

the following holds: n

1=k

� 2 and

dn

(k�1)=k

e(n

1=k

+ 1) � 2n. (Indeed: (n

(k�1)=k

+ 1)(n

1=k

+ 1) � 2n if and only

if (n

(k�1)=k

� 1)(n

1=k

� 1) � 2. On the other hand n

1=k

� 1 � 2

(k+2)=k

� 1 > 1

and n

(k�1)=k

� 1 � 2

(k+2)(k�1)=k

� 1 � 3 sin
e k � 2.)

We assume that n is large enough, to have m

i

n

1=k

� 12, for 1 � i � k.

Theorem 3.25 The network I

";k;n

sorts any input in O(kn

1=k

) iterations.

Proof. Let �

0

and �

0

be the 
onstants �

0

and �

0

from Lemma 3.23. Note

that for ea
h i, 1 � i � k, the sequen
e of layers of I

";k;n

has a following

stru
ture: L = X

i

L

i

Y

i

, where L

i

is a sequen
e of layers of the (";m

i

)-blo
k,

and X

i

and Y

i

are sequen
es of standard layers.

Claim 3.26 Let 


0

be any 
on�guration over f0; 1g and, for 0 < i < k, let




i

= (X

i

L

i

Y

i

)

d�

0

n

1=k

e

(


i�1

). Then, for 0 � i < k, 


i

is (m

i+1

n

1=k

)-dirty.

Obviously, 


0

is at most (m

1

n

1=k

)-dirty. By Lemma 3.23 if 


i�1

is (m

i

n

1=k

)-

dirty, then 


i

is at most (m

i

d�

0

log((n

1=k

+ 1)m

i

)e)-dirty. But

m

i

d�

0

log((n

1=k

+ 1)m

i

)e � n

1=k

dm

i

=n

1=k

ed�

0

log(2n)e = n

1=k

m

i+1

:

It follows that 


k

= L

kd�

0

n

1=k

e

(


0

) is (m

k

d�

0

log((n

1=k

+ 1)m

k

)e)-dirty.
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Claim 3.27 For 1 � i � k,

m

i

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i�1

:

It follows from the de�nition of m

i

that

m

1

� n

(k�1)=k

+ 1

and that, for 1 � i � k � 1, if

m

i

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i�1

;

then

m

i+1

�

0

�

n

(k�i�1)=k

+

i

X

j=0

1=n

j=k

1

A

d�

0

log(2n)e

i

:

Indeed:

m

i+1

= dm

i

=n

1=k

ed�

0

log(2n)e

�

2

6

6

6

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

� d�

0

log(2n)e

i�1

3

7

7

7

d�

0

log(2n)e

�

2

6

6

6

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

3

7

7

7

� d�

0

log(2n)e

i

�

0

�

0

�

n

(k�i)=k

+

i�1

X

j=0

1=n

j=k

1

A

=n

1=k

+ 1

1

A

� d�

0

log(2n)e

i

=

0

�

n

(k�i�1)=k

+

i

X

j=0

1=n

j=k

1

A

� d�

0

log(2n)e

i

:

By Claim 3.27, m

k

�

�

1 +

P

k

j=0

1=n

j=k

�

d�

0

log(2n)e

k

.

We assume that n

1=k

� 2, so m

k

� 3d�

0

log(2n)e

k

and m

k

d�

0

log((n

1=k

+

1)m

k

)e � 3d�

0

log(2n)e

k+1

. Thus 


k

is (3d�

0

log(2n)e

k+1

)-dirty. L = XL

k+1

,

where X is a sequen
e of standard layers and L

k+1

is the sequen
e of the two

layers of n-odd-even transposition network. By Lemma 3.4 su
h a network sorts

the (3d�

0

log(2n)e

k+1

)-dirty 
on�guration in 3d�

0

log(2n)e

k+1

iterations. Thus

the total number of the iterations of I

";k;n

needed for sorting arbitrary n-dirty


on�guration 


0

is

kd�

0

n

1=k

e+ 3d�

0

log(2n)e

k+1

= O(kn

1=k

):
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The sorting time (i.e. the depth of I

";k;n

multiplied by the number of iterations)

is

T

n;k

= (2kd

"

+ 2)(kd�

0

n

1=k

e+ 3d�

0

log(2n)e

k+1

);

where d

"

is the depth of the "-halver. Sin
e d

"

is 
onstant, we have

T

n;k

= O(k

2

n

1=k

):

2
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4 Corre
tion Network

In this se
tion we 
onsider a problem of sorting sequen
es of length n that are

obtained from a sorted sequen
e by 
hanging the values of at most its k elements,

where k is mu
h smaller than n.

De�nition 4.1 A sequen
e (a

1

; : : : ; a

n

) is 
alled k-disturbed if and only if it


an be obtained from some sorted sequen
e s by 
hanging values of at most k

elements of s. A 
on�guration 
 of the set of n registers R is 
alled a k-disturbed


on�guration if and only if a sequen
e (
(R

1

); : : : ; 
(R

n

)) is k-disturbed.

The expression \k-disturbed" should be understood \at most k-disturbed".

Note that sequen
e is k-disturbed if and only if it 
an be transformed into

a sorted sequen
e by 
hanging at most k of its elements. Note also that a

0-disturbed sequen
e is a sorted sequen
e.

The main result presented in this se
tion is the following theorem:

Theorem 4.2 Let n and k be arbitrary positive integers su
h that k � n. Then

there is an expli
it 
onstru
tion of a 
omparator network of depth 4 logn +

O(log

2

k log logn) that sorts any k-disturbed input sequen
e.

Note for k = o

�

2

p

logn= log logn

�

the depth of the network is 4 logn+o(logn).

4.1 Corre
tion networks. Preliminaries

De�nition 4.3 Let R be a set of n registers. A network N = CN(n; d;R; L)

is 
alled a k-
orre
tion network on R if and only if for ea
h k-disturbed 
on�g-

uration 
 of R, the sequen
e (L(d; 
)(R

1

); : : : ; L(d; 
)(R

n

)) is sorted.

De�nition 4.4 Let R be a set of n registers. Let 
 be any 
on�guration of

R over f0; 1g su
h that jfi j 
(R

i

) = 0gj = x. Then the zeroes area of 


(respe
tively ones area of 
) denotes the set of registers fR

i

j 1 � i � xg

(respe
tively fR

i

j x + 1 � i � ng). We 
all a displa
ed one a one 
ontained in

a register from the zeros area. We 
all a displa
ed zero a zero 
ontained in a

register from the ones area.

Lemma 4.5 Let R be a set of n registers. Let k � 0. Let 
 be any k-disturbed


on�guration of R over f0; 1g. Then 
 has at most k displa
ed zeroes and at

most k displa
ed ones.

Proof. Suppose that 
 has more than k zeroes in the ones area. Then

there has to be more than k ones in the zeroes area. Then in the sequen
e

s = (
(R

1

); : : : ; 
(R

n

)) a group of at least k + 1 ones is entirely on the left side

of a group of at least k + 1 zeroes. To 
hange the sequen
e s into a sorted

sequen
e we have to 
hange the values of at least k + 1 elements. Thus 
 is not

k-disturbed. 2
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INSINS
16
0

16
1

Figure 7: The networks INS

1

16

and INS

0

16

Lemma 4.6 Let R be a set of n registers. Let 
 be any k-disturbed 
on�guration

of R over X. For ea
h l, 1 � l � n let 


l

be the l-threshold of 
. Then 


l

is

k-disturbed.

Proof. Suppose that for some l, 


l

is not k-disturbed. Let

x

l

= minf
(R

i

) j 


l

(R

i

) = 1g:

Let 


0

be a 
on�guration obtained from 
 by 
hanging at most k of its values

su
h that the sequen
e (


0

(R

1

); : : : ; 


0

(R

n

)) is sorted. Let 


00

be a 
on�guration

of R over f0; 1g su
h that 


00

(R

i

) = 0 if and only if 


0

(R

i

) < x

l

. Then 


00


an

be obtained from 


l

by 
hanging at most k of its values, sin
e 


l

(R) 6= 


00

(R) if

and only if 
(R) � x

l

and 


0

(R) < x

l

or 
(R) > x

l

and 


0

(R) � x

l

(i.e. R is

one of the at most k registers, where 
 and 


0

di�er). On the other hand, the

sequen
e (


00

(R

1

); : : : ; 


00

(R

n

)) is sorted. Contradi
tion with the fa
t that 


l

is

not k-disturbed. 2

Lemma 4.7 The 
omparator network N is a k-
orre
tion network if and only

if N sorts all k-disturbed zero-one sequen
es.

Proof. It follows from Lemmas 4.6 and 2.22. 2

4.2 Auxiliary networks

The following de�nitions introdu
e the 
lassi
al insertion networks INS

1

n

and

INS

0

n

. The network INS

1

n

inserts any value pla
ed in its �rst register to the

sorted sequen
e stored in the remaining registers. (That is, INS

1

n

sorts any

sequen
e that di�ers from the sorted sequen
e only at the �rst position.) Anal-

ogously, the network INS

0

n

sorts any sequen
e that di�ers from the sorted se-

quen
e only at the last position.
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De�nition 4.8 Let m be a positive integer. For n = 2

m

, we de�ne a network

INS

1

n

= CN(n;m;R;L) on the set of registers R = f1; : : : ; ng with the following

layers L = (L

1

; : : : ; L

m

) (see Fig. 8):

� if m = 1, then L = (f(1; 2)g),

� if m > 1, then L = L

0

(L

m

), where:

{ L

m

= f(i; i+ 1) j 1 � i � n� 1; i is oddg

{ L

0

is the f-mapping of the sequen
e of layers of INS

1

n=2

, where

f(x) = 2x� 1.

If n > 1 is not a power of two, then

INS

1

n

= CN(n; dlogne; f1; : : : ; ng; L

00

);

where L

00

is a f1; : : : ; ng-restri
tion of the sequen
e of layers of INS

1

2

dlogne

.

De�nition 4.9 The network INS

0

n

is dual to INS

1

n

. That is

INS

0

n

= CN(n; dlogne; f1; : : : ; ng; L);

where L = (L

1

; : : : ; L

2dlogne�1

), and L

i

= f(n� j + 1; n� i + 1) j (i; j) 2 L

0

i

g,

where L

0

i

denotes the ith layer of INS

1

n

.

Below we de�ne simple networks I

1

n

and I

0

n

that are able to sort 1-disturbed

sequen
e of zeroes and ones provided that a zero has been 
hanged to a one (in

the 
ase of I

1

n

) or a one has been 
hanged to zero (in the 
ase of I

0

n

). Examples

of these networks are depi
ted on Fig. 8.

De�nition 4.10 Let m be a positive integer. For n = 2

m

, we de�ne a net-

work I

1

n

= CN(n; 2m� 1; R; L) on the set of registers R = f1; : : : ; ng with the

following layers L = (L

1

; : : : ; L

2m�1

):

� if m = 1, then L = (f(1; 2)g),

� if m > 1, then L = (L

1

)L

0

(L

2m�1

), where:

{ L

1

= f(i; i+ 1) j 2 � i � n� 2; i is eveng

{ L

2m�1

= f(i; i+ 1) j 1 � i � n� 1; i is oddg

{ L

0

is the f-mapping of the sequen
e of layers of I

1

n=2

, where f(x) =

2x� 1.

If n > 1 is not a power of two, then

I

1

n

= CN(n; 2dlogne � 1; f1; : : : ; ng; L

00

);

where L

00

is a f1; : : : ; ng-restri
tion of the sequen
e of layers of I

1

2

dlog ne

.
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16
1I I

16
0

Figure 8: The networks I

1

16

and I

0

16

De�nition 4.11 The network I

0

n

is dual to I

1

n

. That is

I

0

n

= CN(n; 2dlogne � 1; f1; : : : ; ng; L);

where L = (L

1

; : : : ; L

2dlogne�1

), and L

i

= f(n� j + 1; n� i + 1) j (i; j) 2 L

0

i

g,

where L

0

i

denotes the ith layer of I

1

n

.

Lemma 4.12 The network I

1

n

(respe
tively I

0

n

) sorts any zero-one input se-

quen
e that has been obtained from a sorted zero-one sequen
e by 
hanging a

single zero into a one (respe
tively, a single one into a zero).

Proof. We prove only the lemma for I

1

n

. The proof for I

0

n

is analogous.

For n = 2, the lemma is obviously true. Let n = 2

m

, for some m > 1. Let

a = (a

1

; : : : ; a

n

) be a zero-one sequen
e obtained from a sorted sequen
e by


hanging a single zero element into a one. Let a

0

= (a

0

1

; : : : ; a

0

n

) be a sequen
e

that is a result of applying the �rst layer of I

1

n

to the sequen
e a. Then the

subsequen
e b of a

0

on the even registers is sorted. The subsequen
e b

0

of a

0

on

the odd registers 
an be obtained from a sorted sequen
e by 
hanging a single

zero into a one. The number of ones in b

0

is not less than the number of ones

in b and not greater than the number of ones in b plus one. Let 
 = (


1

; : : : ; 


n

)

be a sequen
e obtained by applying the next 2m � 3 layers of I

1

n

to a

0

. The

subsequen
e d of 
 on even registers is equal to b, sin
e these layers 
ontain no


omparators with even registers. The subsequen
e d

0

of 
 on odd registers is a

sorted sequen
e b

0

, sin
e these layers are the mapping of the layers of I

1

n=2

on

the odd registers. If the number of ones in d

0

is equal to the number of ones in

d, then 
 is already sorted. Otherwise the number of ones in d

0

is at most one

more than the number of ones in d. The last layer of I

1

n

shifts the �rst one in 


into next even register and the output be
omes sorted.

Note that the network I

1

2

dlog ne

sorts all the zero-one sequen
es obtained from

a sorted zero-one sequen
e by 
hanging a single zero into a one that have only
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ones in registers greater than n. Thus for n that is not a power of two, the

lemma follows from Corollary 2.14. 2

In the following de�nitions we introdu
e a notion of a k-merge version of a


omparator network M : a 
omparator network obtained from M by repla
ing

the registers of M by the bu
kets of k registers and by repla
ing the 
omparators

of M by the merging subnetworks on the 
orresponding pairs of bu
kets.

Let BM

k

= CN(2k;m

k

; f1; : : : ; 2kg; B) denote the Bat
her merging network

for two sorted sequen
es pla
ed in the registers f1; : : : ; kg and fk + 1; : : : ; 2kg.

Let BS

k

= CN(k; d

k

; f1; : : : ; kg; B

0

) denote the Bat
her sorting network for the

sequen
es of length k.

De�nition 4.13 Let k > 0. For i 6= j, let

f

i;j

: f1; : : : ; 2kg ! f(i� 1)k + 1; : : : ; ikg [ f(j � 1)k + 1; : : : ; jkg

be a bije
tion de�ned as follows:

f

i;j

(x) =

�

(i� 1)k + x if x � k;

(j � 1)k + (x� k) if x > k:

Let M = CN(n; d;R; L), where R = f1; : : : ; ng and L = (L

1

; : : : ; L

d

). We


all a network M

k

= CN(kn;m

k

d;R

0

; L

0

) a k-merge version of M if and only

if R

0

= f1; : : : ; kng, and L

0

= L

0

1

: : : L

0

d

, where for ea
h t, 1 � t � d, the

subsequen
e of layers L

0

t

is the union of f

i;j

-mappings of B for all (i; j) 2 L

t

.

Let B

00

be a union of f

i

-mappings of B

0

, where 1 � i � n and f

i

(x) =

(i� 1)k + x. Let M

0

k

= CN(kn; d

k

+m

k

d;R

0

; B

00

L

0

). We 
all M

0

k

an extended

k-merge version of M .

For 1 � i � n we 
all a subset of registers K

i

= fr j (i� 1)k + 1 � i � ikg

the ith bu
ket of M

k

.

Lemma 4.14 Let S

n

= CN(n; d; f1; : : : ; ng; L) be a 1-
orre
tion network of

depth d for the input sequen
es of length n. Let S

n;k

be the extended k merge

version of S

n

. Then the S

n;k

is a k-
orre
tion network for the input sequen
es

of length kn.

Proof. Let a = (a

1

; : : : ; a

nk

) be a k-disturbed 0-1 sequen
e. Let x denote

the number of zeroes in a. (We assume that x > 0.) Let a

0

= (a

0

1

; : : : ; a

0

nk

) be

a sequen
e obtained after sorting the bu
kets within the �rst d

k

layers of S

n;k

(where d

k

is the depth of the Bat
her sorting network BS

k

used in 
onstru
tion

of the S

n;k

). Let x

0

= dx=ke. Thus bu
ket x

0

is the last one that interse
ts the

zero area.

We show that after appli
ation of the remaining part of S

n;k

to the sequen
e

(a

0

1

; : : : ; a

0

nk

) all the bu
kets with indi
es greater than x

0

will be 
leared from

zeroes. Analogous reasoning 
an be used to show that all the bu
kets with the

numbers less than x

0

will be 
leared from ones. Sin
e all the bu
kets remain

sorted this implies that the whole output is also sorted.

For 1 � v � y < w � n, let 


v;w;y

denote a sequen
e obtained from the

sorted 0-1 sequen
e with exa
tly y zeroes by 
hanging a zero on position v into
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a one and a one on position w into a zero. Let d

v;w;y

denote the minimal d

su
h that after applying the �rst d layers of S

n

on input 


v;w;y

we get a sorted

sequen
e. Note that the layer d

v;w;y

is the �rst and the only layer within whi
h

the displa
ed zero is 
ompared with the displa
ed one.

We 
onsider all displa
ed zeroes in a

0

in bu
kets x

0

+ 1; : : : ; n. We show that

S

n;k

gets rid of displa
ed zeroes in these bu
kets. In the same way, we may show

that S

n;k

gets rid of displa
ed ones in bu
kets 1; : : : ; x

0

� 1. Sin
e S

n;k

outputs

bu
ket x

0

in a sorted state, it follows that the whole output is sorted.

Let m be the number of zeroes in bu
kets x

0

+ 1; : : : ; n in a

0

and let W

denote the set of their positions. All these zeroes are, of 
ourse, displa
ed. Let

l denote the number of ones in bu
kets 1 through x

0

in a

0

and let V be the set

of their positions (some of these ones are displa
ed, those from bu
ket x

0

are

not ne
essarily displa
ed). Obviously, m � l and m � k. For ea
h j 2 W , we


hoose an i 2 V using an indu
tive pro
edure based on the following 
onditions:

� We set V

0

= V and W

0

= W .

� For ea
h t, 1 � t � m,

{ we set i

t

= v and j

t

= w, where is (v; w) is one of the pairs from

V

t�1

�W

t�1

that minimizes the value d

dv=ke;dw=ke;x

0

, and

{ we set V

t

= V

t�1

n fi

t

g and W

t

= W

t�1

n fj

t

g.

The idea is the following. A displa
ed zero terminates to be displa
ed at the

moment when the bu
ket 
ontaining it is merged with a bu
ket with an index

at most x

0

and 
ontaining a one. In fa
t, if the se
ond bu
ket 
ontains less ones

than there are zeroes in the �rst bu
ket, then some of the zeroes must remain

in the �rst bu
ket and are still displa
ed. For any displa
ed zero, our de�nition

�xes a one that may 
ause the zero to �nish its status of an displa
ed element.

Let 


v;w;y;t

denote the sequen
e stored in the registers of S

n

after applying

the �rst t layers of S

n

on input 


v;w;y

. For 1 � i � n and t � 0, let p

i;t

denote the number of sequen
es among 


di

1

=ke;dj

1

=ke;x

0

;t

; : : : ; 


di

m

=ke;dj

m

=ke;x

0

;t

that 
ontain ones at position i. Let p

0

i;t

denote the number of ones in bu
ket i

after applying the �rst d

k

+ t � 


k

layers of S

n;k

to input a (where 


k

is a depth

of a Bat
her merging network BM

k

used in 
onstru
tion of S

n;k

). We prove the

following te
hni
al 
laim:

Claim 4.15 1. If 1 � i � x

0

, then p

i;t

� p

0

i;t

.

That is, the number of ones in the bu
ket i at moment t is at least p

i;t

.

2. If x

0

< i � n, then m� p

i;t

� k � p

0

i;t

.

That is, the number of zeroes in the bu
ket i at moment t is at most

m� p

i;t

.

Proof of the 
laim. The proof is by indu
tion on t.

For t = 0 the properties follow from the way we have de�ned the sequen
es

i

1

; : : : ; i

m

and j

1

; : : : ; j

m

. (Property 1 is implied by fi

1

; : : : ; i

m

g � V and Prop-

erty 2 is implied by W � fj

1

; : : : ; j

m

g.)

Let t > 0. For ea
h register R

i

of S

n

, 1 � i � n, there are three possibilities:
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Case 1. There is no 
omparator in
ident to R

i

in layer t of S

n

.

Case 2. There is an 
omparator (R

j

; R

i

) in layer t of S

n

.

Case 3. There is an 
omparator (R

i

; R

j

) in layer t of S

n

.

The �rst 
ase is trivial. We have p

i;t

= p

i;t�1

and p

0

i;t

= p

0

i;t�1

, so Properties 1

and 2 of the 
laim follow from the indu
tion hypothesis.

Proof of Property 1 of Claim 4.15. Let 1 � i � x

0

.

In the se
ond 
ase,

p

i;t

= p

i;t�1

+ p

j;t�1

and, as always, p

i;t

� m � k. In S

n;k

there is a network merging bu
kets j and

i in the 
orresponding layers. Thus

p

0

i;t

= minfk; p

0

i;t�1

+ p

0

j;t�1

g

(sin
e if we merge two bu
kets 
ontaining initially a and b ones, the one with a

bigger index will 
ontain minfk; a+bg ones). Combining this with the indu
tion

hypothesis we get p

i;t

� p

0

i;t

.

In the third 
ase, there are two sub-
ases: either j � x

0

or j > x

0

. If j � x

0

,

then p

i;t

= 0 and hen
e p

i;t

� p

0

i;t

. The reason is that a one in ea
h of the

sequen
es 


di

q

=ke;dj

q

=ke;x

0

;t�1


an freely move to any position j, i < j � x

0

.

The sub-
ase j > x

0

is more tedious. We 
laim that

p

i;t

� maxf0; p

i;t�1

� (m� p

j;t�1

)g:

Indeed, if 


di

r

=ke;dj

r

=ke;x

0

;t�1


ontains a displa
ed one at position i and a dis-

pla
ed zero at position j, then 


di

r

=ke;dj

r

=ke;x

0

;t


ontains a zero at position i.

Therefore it 
ontributes to the de
rease of p

i

. So if p

i;t

> maxf0; p

i;t�1

�

(m � p

j;t�1

)g, then there are two di�erent pairs (i

r

; j

r

) and (i

r

0

; j

r

0

) su
h that




di

r

=ke;dj

r

=ke;x

0

;t


ontains a displa
ed one at position i and 


di

r

0

=ke;dj

r

0

=ke;x

0

;t


ontains a displa
ed zero at position j. Then of 
ourse, d

di

r

=ke;dj

r

=ke;x

0
> t and

d

di

r

0

=ke;dj

r

0

=ke;x

0

> t, sin
e we have dete
ted displa
ed elements after step t on

positions, respe
tively, i and j. On the other hand, d

di

r

=ke;dj

r

0

=ke;x

0

� t, sin
e

in the worst 
ase the displa
ed zero and displa
ed one meet at layer t. So we

should have 
hosen a pair (i

r

; j

r

0

) instead of the �rst of (i

r

; j

r

) and (i

r

0

; j

r

0

).

On the other hand,

p

0

i;t

= maxf0; p

0

i;t�1

� (k � p

0

j;t�1

)g:

By the indu
tion hypothesis, p

i;t�1

� p

0

i;t�1

and (m � p

j;t�1

) � (k � p

0

j;t�1

).

Combining all this we get p

i;t

� p

0

i;t

.
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Proof of Property 2 of Claim 4.15. Let x

0

+ 1 � i � n.

In the se
ond 
ase, there are two sub-
ases possible: either j > x

0

or j � x

0

.

In the �rst sub-
ase k � p

0

i;t

= 0, sin
e the total number of zeroes in bu
kets j

and i is not greater than m, m � k, and the 
orresponding merging sub-network

moves all the zeroes to the jth bu
ket. Hen
e Property 2 holds.

Now 
onsider the se
ond sub-
ase. Note that

m� p

i;t

� (m� p

i;t�1

)� p

j;t�1

;

sin
e in at most p

j;t�1


ases 


di

r

=ke;dj

r

=ke;x

0

;t�1


ontains a one on position j.

Thus, for at most p

j;t�1


ases a zero at position i is ex
hanged with a one at

step t. On the other hand,

k � p

0

i;t

= maxf0; (k � p

0

i;t�1

) � p

0

j;t�1

g:

By the indu
tion hypothesis, k� p

0

i;t�1

� m� p

i;t�1

and p

j;t�1

� p

0

j;t�1

. Hen
e

k � p

0

i;t

� m� p

i;t

.

In the third 
ase

m� p

i;t

= (m� p

i;t�1

) + (m� p

j;t�1

)

and

k � p

0

i;t

= minfk; (k � p

0

i;t�1

) + (k � p

0

j;t�1

)g:

So Claim 4.15 follows by the indu
tion hypothesis.

Sin
e S

n

sorts ea
h sequen
e 


di

1

=ke;dj

1

=ke;x

0

;t

through 


di

m

=ke;dj

m

=ke;x

0

;t

, we

have p

i;t

= m, for i > x

0

and for t equal to the depth of S

n

. By Claim 4.15(b),

p

0

i;t

must be also equal m, for i > x

0

(i.e. the ith bu
ket must not 
ontain

zeroes). Thus Lemma 4.14 follows from Claim 4.15(b) and its dual version for

ones (whi
h we skip here). 2

4.3 Constru
tion of 
orre
tion network N

n;k

In this se
tion we des
ribe the 
onstru
tion of the k-
orre
tion network for

k-disturbed sequen
es of length n > 256, where 3 � k �

1

2

n

1

3+log logn

. This

network will be denoted by N

n;k

= (n;D; f1; : : : ; ng; L). By R we denote the

set of registers of N

n;k

(i.e. f1; : : : ; ng).

The sequen
e L of layers of N

n;k

is divided into �ve parts 
alled phases.

(Thus L = P

1

P

2

P

3

P

4

P

5

, where P

i

denotes the ith phase.) Constru
tion of ea
h

phase is des
ribed in a separate subse
tion.

We assume that n is divisible by n

2

, where n

2

is de�ned in the des
ription

of Phase 4 of the network. Here we only assume that n

2

is even and n

2

> 2k.

First we arrange the n registers of N

n;k

in a matrix M of size n

1

� n

2

,

where n

1

= n=n

2

(i.e. n

1

is the number of rows and n

2

is the number of


olumns) in the row-major order. The rows are numbered 1 through n

1

starting

at the top of the matrix and the 
olumns are numbered 1 through n

2

starting

at the leftmost 
olumn. So the ith row (denoted by ROW

i

) 
ontains registers

(i�1)�n

2

+1; : : : ; i�n

2

, the jth 
olumn (denoted by COL

j

) 
ontains the registers
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y
c

0’s
and
1’s

0’s
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1’s

only
zeroes

only
ones

zeroes and/or ones row  

k

k

Figure 9: Con�guration of zeroes and ones in M after Phase 1

j + (k � 1) � n

2

, for 1 � k � n

1

. We use a 
onvention that for i < 1 or i > n

1

,

ROW

i

= ; and for j < 1 or j > n

2

, COL

i

= ;.

De�nition 4.16 For any zero-one 
on�guration 
 of R we de�ne y




as dx=n

1

e

where x = jfi j 
(i) = 0gj

Note that the rows 1; : : : ; y




� 1, are 
ontained in the zeroes area of 
 and

the rows y




+ 1; : : : ; n

1

are 
ontained in the ones area. ROW

y




may interse
t

both areas.

By S

n

we denote the S
himmler and Starke [15℄ network for input of size n.

S

n

is a network of depth 2dlogne � 1 similar to I

0

n

and I

1

n

that is a 
omplete

1-
orre
tion network (i.e. it sorts arbitrary 1-disturbed sequen
e). By S

n;k

we

denote the extended k-merge version of S

n

.

4.3.1 Phase 1

Let L

0

be a f1; : : : ; n

2

g-restri
tion of the sequen
e of layers of S

dn

2

=ke;k

. We

de�ne layers P

1

as the union of f

i

-mappings of ROW

i

-restri
tions of L

0

, for

1 � i � n

1

and f

i

(x) = n

2

(i� 1) + x.

Lemma 4.17 Let 
 be any k-disturbed 
on�guration of R. Then for ea
h i,

1 � i � n

1

, the ROW

i

-restri
tion of P

1

(
) is sorted.

Proof. Follows from Lemma 4.14 and from the fa
t that ea
h ROW

i

-

restri
tion of 
 is also k-disturbed. 2
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   ...

   ...

   ...

   ...
   ...

k

k- 1

Figure 10: A single right 
luster in M and the ordering of registers inside the


luster

Corollary 4.18 Let 
 be any k-disturbed 
on�guration of R over f0; 1g. Then

the 
on�guration 


0

= P

1

(
) has following properties (see Fig. 9):

1. For ea
h i, 1 � i < y




, the sequen
e 
orresponding to ROW

i

-restri
tion of




0

is sorted and 
ontains all its ones in the last k positions.

2. For ea
h i, y




< i � n

1

, the sequen
e 
orresponding to ROW

i

-restri
tion

of 


0

is sorted and 
ontains all its zeroes in the �rst k positions.

3. The sequen
e 
orresponding to ROW

y




-restri
tion of 


0

is sorted.

4.3.2 Phase 2

The aim of Phases 2 and 3 is to move the displa
ed zeroes that are below the

row y




+ 1 to the leftmost 
olumn and the displa
ed ones that are above the

row y




� 1 to the rightmost 
olumn.

We partition the sub-matrix of k rightmost (respe
tively, leftmost) 
olumns

into squares of size k� k. For ea
h square 
ontained in rightmost (respe
tively,

leftmost) 
olumns, the subset 
onsisting of the �rst k� 1 
olumns of the square

and the last 
olumn of next lower square (respe
tively �rst 
olumn of the square

and the k� 1 last 
olumns of the next lower square) is 
alled a 
luster (see Fig.

10).

During Phase 2 ea
h 
luster is sorted by a Bat
her sorting network for input

size k

2

.

Let us des
ribe this more formally. First we de�ne the in
reasing fun
-

tion f

j

su
h that that the set f

j

(f1; : : : ; k

2

g) \ R is the jth left 
luster. If

f

j

(f1; : : : ; k

2

g) � R, then the register f

j

(i) is the ith register of the jth left


luster a

ording to their natural order.
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It is easy to 
he
k that f

j

is de�ned as follows for x 2 f1; : : : ; k

2

g:

f

j

(x) =

�

(j � 1)kn

2

+ (x� 1)n

2

+ 1 if x � k;

j(k + i

x

� 1)n

2

+ (x� k) + 1� (i

x

� 1)(k � 1) if x > k;

where i

x

= d

x�k

k�1

e.

For ea
h j, 0 � j � dn

1

=ke, let CL

j

= f

j

(f1; : : : ; k

2

g) \ R denote the jth

left 
luster. Note that all the sets CL

j

are pairwise disjoint. We 
all a subset

TL

j

= f

j

(f1; : : : ; kg) \ R a tail of the jth left 
luster. Note that ea
h TL

j

is


ontained in COL

1

and interse
ts the rows (j � 1)k+ 1 through jk. For ea
h i,

1 � i � k, we 
all a subset RL

j;i

= f

j

(fk+(i�1)(k�1)+1; : : : ; k+i(k�1)g)\R

the ith row of the jth left 
luster. Note that ea
h RL

j;i

is 
ontained in ROW

jk+i

and interse
ts the 
olumns 2 trough k. If i < 1 or i > k, then we assume that

RL

j;i

= ;.

In a similar way, we de�ne the right 
lusters with the use of the following

in
reasing fun
tions g

j

:

g

j

(x) = (j + 1)kn

2

� f

1

(k

2

� x + 1) + 1:

For ea
h j, 0 � j � dn

1

=ke, let CR

j

= g

j

(f1; : : : ; k

2

g) \ R denote the jth

right 
luster. All the sets CR

j

are pairwise disjoint.

We 
all a subset TR

j

= g

j

(fk

2

� k + 1; : : : ; k

2

g) \ R a tail of the jth right


luster. Ea
h TR

j

is 
ontained in COL

n

2

and interse
ts the rows jk+1 through

(j + 1)k. For ea
h i, 1 � i � k we 
all a subset RR

j;i

= g

j

(f(i � 1)(k �

1) + 1; : : : ; i(k � 1)g) \ R the ith row of the CR

j

. Ea
h RR

j;i

is 
ontained in

ROW

(j�1)k+i

and interse
ts the 
olumns n

2

� k through n

2

� 1. If i < 1 or

i > k, then we assume that RR

j;i

= ;.

Re
all that BS

k

2

denote a Bat
her sorting network for the set of registers

f1; : : : ; k

2

g. Let L

0

be a sequen
e of layers of BS

k

2

. The sequen
e of layers

P

2

(i.e. of Phase 2) is the R-restri
tion of the union of f

j

-mappings and g

j

-

mappings of L

0

, for 0 � j � dn

1

=ke.

Let 
 be any k-disturbed 
on�guration of R over f0; 1g. The 
on�guration




0

= P

1

P

2

(
) has the following properties:

Fa
t 4.19 Let

U =

0

�

[

1�i<y




ROW

i

1

A

n

0

�

[

n

2

�k<j�n

2

COL

i

1

A

and

D =

0

�

[

y




<i�n

1

ROW

i

1

A

n

0

�

[

1�j�k

COL

i

1

A

The U-restri
tion of 


0


ontains only zeroes and the D-restri
tion of 


0


ontains

only ones.
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Proof. Fa
t 4.19 follows immediately from the Corollary 4.18 and from the

fa
t that ea
h 
omparator of the layers of P

2

is 
ontained either in the k leftmost

or in the k rightmost 
olumns of M . 2

Fa
t 4.20 Let

U

0

=

0

�

[

1�i<y




ROW

i

1

A

n COL

n

2

and

D

0

=

0

�

[

y




<i�n

1

ROW

i

1

A

n COL

1

The U

0

-restri
tion of 


0


ontains at most k� 1 ones and the D

0

-restri
tion of 


0


ontains at most k � 1 zeroes.

Proof. In 
on�guration P

1

(
) all the rows of M are sorted. The appli
ation

of P

2

does not de
rease the number of ones in the rightmost 
olumn and does

not de
rease the number of zeroes in the leftmost 
olumn. Hen
e at least one

of the ones that are above ROW

y




must remain in the rightmost 
olumn and

at least one of the zeroes that are below ROW

y




must remain in the leftmost


olumn. 2

Fa
t 4.21 If CR

j

is (entirely) above the row y




of M , then the CR

j

-restri
tion

of 


0

has all its ones in its tail TR

j

.

Proof. For ea
h 
luster CR

j

lying entirely above the row y




the CR

j

-

restri
tion of P

1

(
) 
ontains at most k ones. The CR

j

-restri
tion of P

1

(
) is

sorted by P

2

and TR

j


ontains the last k registers of CR

j

. 2

Fa
t 4.22 If TR

j

interse
ts the row y




of M , then CR

j

-restri
tion of 


0

has all

its ones in TR

j

[ RR

j;k

.

Proof. By Fa
t 4.20 and the fa
t that CR

j

nTR

j

is on the left side of COL

n

2

and above ROW

y




, there are at most k � 1 ones in (CR

j

n TR

j

)-restri
tion of




0

. Sin
e (CR

j

n TR

j

)-restri
tion of 


0

is sorted, all its ones must be in the last

row RR

j;k

. 2

Fa
t 4.23 If (j � 1)k + i = y




, for 1 � i � k, then the CR

j

-restri
tion of 


0


ontains ones only in RR

j;i

[RR

j;i�1

.

Proof. Fa
t 4.23 follows from the fa
t that there are at most k � 1 ones in

the registers above the row y




of M in the CR

j

-restri
tion of 


0

and that either

i = 1 or there is enough spa
e for them in RR

j;i�1

. 2

Fa
ts 4.24,4.25,and 4.26 are analogous to Fa
ts 4.21,4.22,and 4.23 respe
-

tively and 
an be proved in a similar way.

Fa
t 4.24 If CL

j

is (entirely) below the row y




of M , then the CL

j

-restri
tion

of 


0

has all its zeroes in its tail TL

j

.
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Fa
t 4.25 If tail of TL

j

interse
ts the row y




of M , then CL

j

-restri
tion of 


0

has all its zeroes in TL

j

[RL

j;1

.

Fa
t 4.26 If jk + i = y




, 1 � i � k, then the CL

j

-restri
tion of 


0


ontains

zeroes only in the RL

j;i

[ RL

j;i+1

.

Corollary 4.27 Let 
 be any k-disturbed 
on�guration of R over f0; 1g. Let

j = dy




=ke and i = (y




mod k) + 1. The 
on�guration 


0

= P

1

P

2

(
) has the

following properties:

1. All displa
ed ones of 


0

are in COL

n

2

[ RR

j�1;k

[ RR

j;i

[ RR

j;i�1

. The

number of ones in RR

j�1;k

[ RR

j;i�1

is at most k � 1.

2. All displa
ed zeroes of 


0

are in COL

1

[ RL

j+1;1

[ RL

j;i

[ RL

j;i+1

. The

number of zeroes in RL

j+1;1

[ RL

j;i+1

is at most k � 1.

Proof. The property 1 follows from Fa
ts 4.21, 4.22 and 4.23. Analogously

the property 2 follows from Fa
ts 4.24, 4.25 and 4.26. 2

4.3.3 Phase 3

The aim of the third phase is to move all the displa
ed ones above ROW

y




into

ROW

y




�1

[ COL

n

2

and all the zeroes below ROW

y




into ROW

y




+1

[ COL

1

.

For this purpose we 
onsider the unions F

j;i

of the subsets (CL

j

nRL

j;1

) \

COL

i+1

with the singletons RL

j+1;1

\ COL

k�i+1

, for the displa
ed zeros in

the left 
lusters, and the unions G

j;i

of (CR

j

n RR

j;k

) \ COL

n

2

�k+i

with the

singletons RR

j�1;k

\ COL

n

2

�i

(see the middle part of Fig. 11).

Below we de�ne the fun
tions f

j;i

(respe
tively g

j;i

) su
h that f

j;i

(s) (re-

spe
tively g

j;i

(s)) denotes the sth register of F

j;i

(respe
tively, of G

j;i

).

For 0 � j � dn

1

=ke, for 1 � i � k � 1 let the f

j;i

and g

j;i

be mapping

fun
tions over f1; : : : ; kg de�ned as follows.

f

j;i

(x) =

�

jkn

2

+ xn

2

+ 1 + i if x < k ;

jkn

2

+ xn

2

+ k � i+ 1 if x = k ;

g

j;i

(x) =

�

(j � 1)kn

2

+ (x� 1)n

2

� i if x = 1 ;

(j � 1)kn

2

+ (x� 1)n

2

� k + i if x > 1 :

Note that f

j;i

(f1; : : : ; k � 1g) \ R = (CL

j

n RL

j;1

) \ COL

i+1

and f

j;i

(fkg) \

R = RL

j+1;1

\COL

k�i+1

: Analogously, g

j;i

(f2; : : : ; kg)\R = (CR

j

nRR

j;k

) \

COL

n

2

�k+i

and g

j;i

(f1g) \R = RR

j�1;k

\ COL

n

2

�i

:

For 0 � j � dn=ke and 1 � i � k � 1, we have

F

j;i

= f

j;i

(f1; : : : ; kg) \ R

and

G

j;i

= g

j;i

(f1; : : : ; kg) \ R:

The third phase P

3

is de�ned as the R-restri
tion of the union of the f

j;i

-

mappings of INS

0

k

and the g

j;i

-mappings of INS

1

k

, for all j, 0 � j � dn=ke and

for all i, 1 � i � k � 1.
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Claim 4.28 Let 
 be a k-disturbed 
on�guration of R over f0; 1g. Let j =

dy




=ke. Let 


0

= P

1

P

2

(
). Then

� The G

j;i

-restri
tion of 


0

has at most one one above ROW

y




and the se-

quen
e 
orresponding to G

j;i

-restri
tion of 


0

is either sorted or di�ers

from the sorted sequen
e only at the �rst position.

� The F

j;i

-restri
tion of 


0

has at most one zero below ROW

y




and the se-

quen
e 
orresponding to F

j;i

-restri
tion of 


0

is either sorted or di�ers from

the sorted sequen
e only at the last position.

Proof. The 
laim follows from de�nitions of F

j;i

and G

j;i

. To see the

property forG

j;i

, note that if the �rst register of the G

j;i

and any of its remaining

registers both 
ontain the ones, then the sum of the numbers of ones in the


orresponding rows of the right 
lusters must be greater than k � 1. By Fa
t

4.20, it is possible only if the se
ond register is below ROW

y




�1

. The part of

the sequen
e in the registers g

j;i

(2) through g

j;i

(k) is sorted, sin
e the 
luster

CR

j

is sorted. See Fig. 11. 2

Lemma 4.29 Let 
 be a k-disturbed 
on�guration of R over f0; 1g. Let 


0

=

P

1

P

2

P

3

(
). Then 


0

has following properties:

1. All registers that are above ROW

y




�1

and on the left side of COL

n

2


on-

tain only zeroes.

2. All registers of ROW

y




�1

on the left side of COL

n

2

�k+1


ontain only

zeroes.

3. All registers below ROW

y




+1

and on the right side of COL

1


ontain only

ones.

4. All registers of ROW

y




+1

on the right side of COL

k


ontain only ones.

Proof. We prove only the Properties 1 and 2. The Properties 3 and 4 are

dual and 
an be proved in an analogous way.

By Fa
t 4.19, all the ones above ROW

y




in P

1

P

2

(
) are in the k right-

most 
olumns. By Claim 4.28 the sequen
e 
orresponding to G

j;i

-restri
tion of

P

1

P

2

(
) has at most one one above ROW

y




and has the stru
ture that 
an be

sorted by INS

1

k

. Property 1 follows from the fa
t that ea
h G

j;i

-restri
tion of

P

1

P

2

(
) is sorted by the 
orresponding g

j;i

-mapping of INS

1

k

.

By the Fa
t 4.19, the part of ROW

y




�1

on the left side of COL

n

2

�k+1


ontains no ones in P

1

P

2

(
). Property 2 follows from the de�nition of P

3

: All

the 
omparators of P

3

with the se
ond registers in the ROW

y




�1

on the left

side of COL

n

2

�k+1

have their �rst registers in the leftmost k 
olumns above

ROW

y




. By Fa
t 4.19, these registers must 
ontain zeroes in P

1

P

2

(
). Thus no

su
h 
omparator 
an insert a one into ROW

y




�1

. 2

Fig. 11 illustrates what happens during Phase 3 in the two right 
lusters

that interse
t the row y




. The leftmost part displays the pla
ement of the ones
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y
c

row

upper cluster

lower  cluster

1’s

1’s 1’s

1’s

1’s

1’s ...

...

Figure 11: The 
on�guration transformation during the phase 3

in the last row of the upper 
luster and in the row of the lower 
luster that is

just above ROW

y




. The rightmost part shows the pla
ement of these ones after

the appli
ation of P

3

. The middle part shows how the registers from the last

row of the upper 
luster are grouped together in the phase P

3

with the 
olumns

of the next lower 
luster.

4.3.4 Phase 4

Phase 4 is the 
ore part of the 
onstru
tion. It demonstrates the te
hnique

of embedding the networks I

1

n

1

and I

0

n

1

in the matrix of registers M of size

n

1

�n

2

in su
h a way that after appli
ation of P

4

all the displa
ed elements are


on
entrated in at most three neighboring rows of M .

Trees of 
olumns. Below we de�ne the trees that will be used in des
ription

of the 
onstru
tion of P

4

.

De�nition 4.30 Let T

d

denote the tree with the edges labeled by positive inte-

gers, de�ned re
ursively as follows:

1. T

0


ontains only a single isolated vertex (a root of T

0

).

2. For d > 0, T

d

is a tree 
onstru
ted from two 
opies of T

0

d�1

(where T

0

d�1

is


reated from T

d�1

by in
reasing the labels of all edges by one) by 
onne
ting

the root of the �rst T

0

d�1

as the new 
hild of the root of the se
ond T

0

d�1

with a new edge labeled 1. The root of the se
ond T

0

d�1

is a root of T

d

.

By a level of a node in T

d

we denote its distan
e from the root (i.e. the level

of the root is 0, the level of any 
hild of the root is 1, and so on). By T

d;t

we
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T
d
,

T
d
,

+1d
T

1

Figure 12: Constru
tion of T

d+1

from T

0

d

denote the subtree of T

d


onsisting of the nodes with the levels less or equal to

t. By �

d;t

we denote the number of verti
es of T

d;t

.

Note that T

d

is isomorphi
 with a binomial tree. Sin
e the binomial tree has

�

d

i

�

verti
es on the ith level, we have �

d;t

=

P

t

i=0

�

d

i

�

.

Let T = T

2dlog ne�1;dlog ke

. Let � = �

2dlog ne�1;dlog ke

. We 
an now de�ne the

value of n

2

(and thus of n

1

): n

2

= 2�.

Constru
tion of P

4

. We use the tree T to des
ribe the 
onstru
tion of P

4

.

Let V be a set of verti
es of T and let v

0

2 V be a root of T .

We de�ne two sets of 
olumns:

CSET

1

= fCOL

i

j 2 � i � n

2

=2g

and

CSET

0

= fCOL

i

j n

2

=2 < i � n

2

� 1g:

By Lemma 4.29 and by the fa
t that n

2

> 2k the following holds.

Claim 4.31 Let 
 be a k-disturbed 
on�guration over f0; 1g. Let 


0

= P

1

P

2

P

3

(
).

If COL

i

2 CSET

1

, then COL

i

-restri
tion of 


0

has only zeroes above ROW

y




.

If COL

i

2 CSET

0

, then COL

i

-restri
tion of 


0

has only ones below ROW

y




.

Let


ol

0

: V ! fCOL

1

g [ CSET

0

be any bije
tion su
h that 
ol

0

(v

0

) = COL

1

. Symmetri
ally, let


ol

1

: V ! fCOL

n

2

g [ CSET

1

be any bije
tion su
h that 
ol

1

(v

0

) = COL

n

2

. Let 
ol

�1

i

denote the reverse

fun
tion of 
ol

i

, for i 2 f0; 1g.

The phase P

4

= (P

4;1

; : : : ; P

4;4dlog ne�2

) is de�ned as follows:

� The 
olumns fCOL

n

2

g[CSET

1

of M 
ontain the embedding of I

1

n

1

. The


omparators of P

4

in this part of M are de�ned as follows:

39



{ For ea
h l, 1 � l � 2dlogne�1, for ea
h 
olumn COL

i

2 fCOL

n

2

g[

CSET

1

su
h that 
ol

�1

1

(COL

i

) = v

0

or the vertex 
ol

�1

1

(COL

i

) is


onne
ted with its parent by an edge with a label less than l, there is

a 
omparator (r

1

; r

2

) in P

4;2l�1

if and only if fr

1

g = ROW

j

1

\COL

i

and fr

2

g = ROW

j

2

\ COL

i

and the lth layer of I

1

n

1


ontains the


omparator (j

1

; j

2

).

{ For ea
h l, 1 � l � 2dlogne�1, for ea
h 
olumn COL

i

2 fCOL

n

2

g[

CSET

1

su
h that the vertex v

i

= 
ol

�1

1

(COL

i

) is 
onne
ted with its


hild v

0

i

by an edge with a label l, there is a 
omparator (r

1

; r

2

) in P

4;2l

if and only if fr

1

g = ROW

j

1

\ COL

i

and fr

2

g = ROW

j

2

\ 
ol

1

(v

0

i

),

and the lth layer of I

1

n

1


ontains the 
omparator (j

1

; j

2

).

� Analogously we de�ne the embedding of I

0

n

1

in the 
olumns fCOL

1

g [

CSET

0

.

The idea behind the 
onstru
tion is the following one: Consider the displa
ed

ones in COL

n

2

. We want to move them down to the row at least y




� 1.

Initially, COL

n

2


ontains at most k ones above ROW

y




(displa
ed ones) and

the 
olumns from CSET

1


ontain no ones above ROW

y




(we say they are 
lean).

Any displa
ed one falls down inside its 
olumn through the 
omparators in the

odd layers of P

4

until it is blo
ked by another displa
ed one. In that 
ase,

the 
orresponding 
omparator in the next even layer of P

4

moves the blo
ked

one to the register in some 
lean 
olumn to the same row that it would have

rea
hed if it had not been blo
ked. Note the 
lean 
olumn 


0

that 
an re
eive

displa
ed ones from a 
olumn 
 in the layer P

4;2l


orresponds to a 
hild of the

vertex 
orresponding to 
. On the other hand, 
 
an move at most half of its

displa
ed ones to 


0

. That means that the 
olumns 
orresponding to the verti
es

on the level dlog ke will re
eive at most one displa
ed one and will never have


ollisions between displa
ed elements. That is why we 
ould 
lip T

2dlogne�1

to

T

2dlogne�1;dlog ke

in our 
onstru
tion.

Lemma 4.32 Let 
 be any k-disturbed 
on�guration of R over f0; 1g. Let 


0

=

P

1

P

2

P

3

P

4

(
). Then 


0

has only zeroes above the ROW

y




�1

and only ones below

the ROW

y




+1

.

Proof. We prove only that 


0

has no ones above ROW

y




�1

. The proof that




0

has no zeroes below ROW

y




+1

is analogous.

Let X

0

= COL

1

[

S

COL

i

2CSET

0

COL

i

. Let X

1

= COL

n

2

[

S

COL

i

2CSET

1

COL

i

.

Note that ea
h 
omparator of phase P

4

has both its registers either in X

0

or in

X

1

.

Sin
e X

0

-restri
tion of the 
on�guration 


00

= P

1

P

2

P

3

(
) has no ones above

ROW

y




�1

and P

4

is a sequen
e of standard layers, there are also no ones above

ROW

y




�1

in the X

0

-restri
tion of 


0

.

Thus we have to show only that all the ones that are above the ROW

y




�1

in the X

1

-restri
tion of 


00

will be moved out of this region by P

4

.

40



Claim 4.33 Let COL

i

be a 
olumn from CSET

1

. Let t be the label of the edge


onne
ting 
ol

�1

1

(COL

i

) with its parent. Let 0 � t

0

< 2t. Then there are no

ones above ROW

y




in the COL

i

restri
tion of P

4;1

: : : P

4;t

0

(


00

)

Proof of the 
laim. By Claim 4.31, all 
olumns of CSET

1

have only zeroes

above ROW

y




in 
on�guration 


00

. The only 
olumn in the X

1

-restri
tion of 


00

that may have ones above ROW

y




is COL

n

2

. P

4;2t

is the �rst (and the only)

layer of P

4

that has 
omparators with the se
ond register in COL

i

and the �rst

register from outside COL

i

(i.e. the only layer that 
an in
rease the number of

ones in COL

i

).

Claim 4.34 Let COL

i

be a 
olumn from CSET

1

[ fCOL

n

2

g. Let l be the

level of 
ol

�1

1

(COL

i

) in T . Let m

t

be the number of ones above ROW

y




in the

COL

i

-restri
tion of the 
on�guration P

4;1

: : : P

4;t

(


00

). Then maxfm

t

j 0 � t �

4dlogne � 2g � 2

�l

k.

Proof of the 
laim. By indu
tion on l. If l = 0, then COL

i

= COL

n

2

and the number of ones in this 
olumn above ROW

y




is never greater than

k = 2

�0

k. If l > 0, then the number of ones above ROW

y




in the 
olumn

COL

j

su
h that 
ol

�1

1

(COL

j

) is the parent of 
ol

�1

1

(COL

i

), is never greater

than 2

�(l�1)

k. There is only one layer P

4;t

0

in the phase P

4

that 
ontains


omparators with the �rst register in COL

j

and the se
ond register in COL

i

.

All the remaining layers of P

4


ontain 
omparators with either both registers

in COL

i

or with the se
ond register outside COL

i

. Before appli
ation of P

4;t

0

there are no ones above ROW

y




in COL

i

. The 
omparator (r

1

; r

2

) of P

4;t

0


an

move a one from COL

j

to COL

i

if and only if the 
omparator (r

1

; r

0

2

) from the

phase P

4;t

0

�1

with both registers in COL

j

had ones in its both registers. There

are at most 2

�(l�1)

k=2 = 2

�l

k su
h 
omparators.

Claim 4.35 Letm be the number of ones above ROW

y




in the COL

n

2

-restri
tion

of 


00

. (Note that m � k.) Let s

1

; : : : ; s

m

be the in
reasing sequen
e of all their

row positions. Let 


1;0

; : : : ; 


m;0

be a sequen
e of 
on�gurations of f1; : : : ; n

1

g

over f0; 1g, su
h that




i;0

(j) =

�

1 if j = s

i

or j � y




0 otherwise.

Let 


i;t

be a result of appli
ation of the subsequen
e of t initial layers of I

1

n

to

the 
on�guration 


i;0

. Let s

i;t

be the (unique) number su
h that s

i;t

< y




and




i;t

(s

i;t

) = 1. Let 


00

t

= P

4;1

: : : P

4;2t

(


00

). Let m

t

be a number of rows above

ROW

y




that 
ontain ones in the X

1

-restri
tion of 


00

t

, and let s

00

1;t

; : : : ; s

00

m

t

;t

be

the in
reasing sequen
e of their indexes. Then

fs

1;t

; : : : ; s

m;t

g = fs

00

1;t

; : : : ; s

00

m

t

;t

g:

Proof of the 
laim. By indu
tion on t. The 
ase for t

0

follows from

the fa
ts that ea
h s

i;0

= s

i

and all the ones above ROW

y




in X

1

-restri
tion
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of 


00

are in COL

n

2

. Let t > 0. We have to show that if fs

1;t

; : : : ; s

m;t

g =

fs

00

1;t

; : : : ; s

00

m

t

;t

g; then fs

1;t+1

; : : : ; s

m;t+1

g = fs

00

1;t+1

; : : : ; s

00

m

t+1

;t+1

g. Note that

either s

i;t+1

= s

i;t

or there is an 
omparator (s

i;t

; s

i;t+1

) in the tth layer of I

1

n

1

and s

i;t+1

< y




. If there are any ones above ROW

y




in the COL

i

-restri
tion of




00

t

, then 
ol

�1

1

(COL

i

) either is a root of T or must be 
onne
ted with its parent

by an edge with the label not greater than t. By the de�nition of P

4

, either:

� there are 
omparators (r

1

; r

2

) in P

4;2t+1

and (r

1

; r

0

2

) in P

4;2t+2

su
h that

{ fr

1

g = COL

i

\ ROW

s

i;t

and

{ fr

2

g = COL

i

\ ROW

s

i;t+1

and

{ fr

0

2

g = COL

j

\ ROW

s

i;t+1

,

where 
ol

�1

1

(COL

j

) is a 
hild of 
ol

�1

1

(COL

i

) 
onne
ted with it by an

edge with the label t + 1, or

� there is only the 
omparator (r

1

; r

2

) in P

4;2t+1

and the level of 
ol

�1

1

(COL

i

)

in T is dlog ke.

By the Claim 4.34, in the se
ond 
ase there is at most single one above

ROW

y




in COL

i

and it will be shifted by the 
omparator (r

1

; r

2

) from the

ROW

s

i;t

to the ROW

s

i;t+1

.

By the Claim 4.33, in the �rst 
ase the one from r

1

is shifted to r

2

or to r

0

2

,

sin
e P

4;2t+1

(


00

t

)(r

0

2

) = 0.

Lemma 4.32 follows from the fa
t that by Lemma 4.12 fs

1;t

; : : : ; s

m;t

g �

fy




� 1g, for t = 2dlogne � 1. 2

4.3.5 Phase 5

By Lemma 4.32, after appli
ation of the phases P

1

P

2

P

3

P

4

to a k-disturbed zero-

one 
on�guration 
 there are only zeroes above ROW

y




�1

and only ones below

ROW

y




+1

. Let 


0

= P

1

P

2

P

3

P

4

(
). (ROW

y




�1

[ ROW

y




)-restri
tion of 


0

and

(ROW

y




[ ROW

y




+1

)-restri
tion of 


0

are k-disturbed, sin
e 


0

is k-disturbed.

The last phase P

5

is de�ned as follows:

P

5

= P

0

5

P

00

5

P

000

5

;

where P

0

5

, P

00

5

and P

000

5

are de�ned below.

Let L be a f1; : : : ; 2n

2

g-restri
tion of the subsequen
e of layers of S

d2n

2

=ke;k

.

(Re
all that this is the extended k-merge version of the S
himmler Starke 1-


orre
tion network.) Let P

0

5

be the R-restri
tion of a union of the f

i

-mappings

of L, where f

i

(x) = 2n

2

i+ x.

Let M be a sequen
e of layers of BM

2n

2

(the Bat
her merging networks

for two sorted sequen
es of length 2n

2

stored in the registers f1; : : : ; 2n

2

g and

f2n

2

+ 1; : : : ; 4n

2

g). Let P

00

5

(respe
tively P

000

5

) be the R-restri
tion of a union

of the g

i

-mappings (respe
tively g

0

i

-mappings) of M , where g

i

(x) = 4n

2

i + x

(respe
tively g

0

i

(x) = g

i

(x) + 2n

2

).

The following lemma states that N

n;k

is a k-
orre
tion network.
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Lemma 4.36 Let 
 be any k-disturbed 
on�guration of R over f0; 1g. Then




0

= P

1

P

2

P

3

P

4

P

5

(
) is sorted.

Proof. The 
on�guration 


00

= P

1

P

2

P

3

P

4

P

0

5

(
) has following properties:

� for i � 1, the (ROW

2i�1

[ROW

2i

)-restri
tion of 


00

is sorted (by Lemma

4.14).

� Let i

0

= d(y




+ 1)=2e. Then 2(i

0

� 2) + 1 � y




� 1, so 


00

has only zeroes

above ROW

2(i

0

�2)+1

. (Sin
e, by Lemma 4.32, all displa
ed elements of 


00

are 
ontained in ROW

y




�1

[ROW

y




[ROW

y




+1

.) Similarly, 2i

0

� y




+1,

so 


00

has only ones below ROW

2i

0

.

It is enough to sort the fragment of 


00


ontained in the rows 2(i

0

�2)+1 through

2i

0

. Both (ROW

2i

0

�3

[ROW

2i

0

�2

)-restri
tion of 


00

and (ROW

2i

0

�1

[ROW

2i

0

)-

restri
tion of 


00

are sorted. Thus all we have to do is merge the subsequen
es


ontained in ROW

2i

0

�3

[ ROW

2i

0

�2

and ROW

2i

0

�1

[ ROW

2i

0

. We do not

know the parity of i

0

. If i

0

is even, then already P

00

5

(


00

) is sorted. Otherwise

P

00

5

(


00

) = 


00

and P

000

5

(P

00

5

(


00

)) is sorted. 2

4.3.6 Estimation of the depth of N

n;k

For any positive integer i, let m

i

denote the depth of the Bat
her merging

network BM

i

that merges two sequen
es of length i ea
h, and let d

i

denote

the depth of the Bat
her sorting network BS

i

for input of size i. Then m

i

=

1 + dlog ie and d

i

=

m

i

dlog ie

2

.

The depth p

1

of the phase P

1

is equal to the depth of S

dn

2

=ke;k

. Thus

p

1

= d

k

+m

k

(2dlogdn

2

=kee � 1) = m

k

�

dlog ke

2

+ 2dlogdn

2

=kee � 1

�

� m

k

�

(log k)=2 + 2 log(n

2

=k) +

3

2

�

= m

k

�

2 logn

2

�

3

2

log k +

3

2

�

� 2 logn

2

(1 + dlog ke)�

3

2

log k �

3

2

log

2

k +

3

2

+

3

2

dlog ke

� 2 logn

2

(1 + dlog ke) �

3

2

log

2

k + 3:

Analogously the depth p

0

5

of P

0

5

(the depth of S

d2n

2

=ke;k

) is not greater than

2 log(2n

2

)(1 + dlog ke) �

3

2

log

2

k + 3:

The depth p

00

5

of P

00

5

(and of P

000

5

) is equal to the depth of BM

2n

2

, so p

00

5

=

1 + dlog(2n

2

)e: Thus the depth of phase P

5

is equal to

p

5

= p

0

5

+ 2p

00

5

� 2 log(2n

2

)(1 + dlog ke) �

3

2

log

2

k + 3 + 2 + 2dlog(2n

2

)e
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� 2 log(2n

2

)(2 + dlog ke) �

3

2

log

2

k + 7:

The depth p

2

of P

2

is equal to the depth of BS

k

2

:

p

2

= d

k

2

= m

k

2

dlog(k

2

)e

2

� 2(1 + log k)

2

= 2 log

2

k + 4 log k + 2:

The depth p

3

of the phase P

3

is equal to the depth of INS

1

k

(or INS

0

k

):

p

3

= dlog ke � log k + 1:

The depth p

4

of P

4

is twi
e the depth of I

1

n

1

(or I

0

n

1

).

p

4

= 4dlog(n=n

2

)e � 2 � 4 logn� 4 logn

2

+ 2:

The depth of P 
an be estimated as follows:

p = p

1

+ p

2

+ p

3

+ p

4

+ p

5

�

�

2 logn

2

(1 + dlog ke)�

3

2

log

2

k + 3

�

+(2 log

2

k + 4 log k + 2) + (log k + 1) + (4 logn� 4 logn

2

+ 2)

+

�

2 log(2n

2

)(2 + dlog ke) �

3

2

log

2

k + 7

�

Finally

p � 4 logn+ 4 logn

2

�

1

2

+ dlog ke

�

� log

2

k + 7 log k + 21 (2)

We have to estimate n

2

. Re
all that n

2

(the number of 
olumns of the matrix

of registers M) is twi
e the number of verti
es of the tree T . On the other hand

T is a subtree of the binomial tree T

2dlogne�1

, 
onsisting of the verti
es on the

levels not greater than dlog ke. The number of the verti
es on the ith level of

T

m

is

�

m

i

�

. Thus

n

2

= 2 �

dlog ke

X

i=0

�

2dlogne � 1

i

�

(3)

Lemma 4.37 (due to Marek Piotr�ow) If n � 256 and 3 � k �

1

2

n

1

3+log logn

,

then logn

2

� dlog ke(log logn + 2) and n

2

� n=k.

Proof. By an easy indu
tion one 
an prove that

j�1

X

i=0

�

m

i

�

�

�

m

j

�

(4)

for m � 2 and j �

m+1

3

. In our 
ase

dlog ke �

�

logn

3 + log logn

�

�

2

3

dlogne �

(2dlogne � 1) + 1

3

:
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Therefore, we 
an apply the inequality (4) to the sum (3) without the last term

and obtain

n

2

� 4

�

2dlogne � 1

dlog ke

�

: (5)

By Stirling formula, we have the following well-known upper bound:

�

m

j

�

�

1

p

2�j

�

me

j

�

j

:

Applying this to (5) and taking logarithm of both sides we get

logn

2

�

�

3

2

�

1

2

log(�dlog ke)

�

+ dlog ke

�

log logn + log

e(2 + 1= logn)

dlog ke

�

Due to our assumption about k and n, dlog ke � 2 and logn � 8, and therefore

the expression in the �rst parenthesis is bounded by 0:2 and

log

e(2 + 1= logn)

dlog ke

� 1:6:

The �rst part of lemma follows. The se
ond one is a simple 
onsequen
e of the

�rst part and the upper bound on k:

dlog ke � 1 + log k �

logn

3 + log logn

and

logn

2

� dlog ke(log logn+ 3)� log k � log

n

k

:

2

Lemma 4.37 shows that the 
onstru
tion is 
orre
t: the required number of


olumns does not ex
eed the total number of registers and there are at least k

rows.

If n � 256 and 3 � k �

1

2

n

1

3+log logn

, then by Lemma 4.37 and by the

estimation (2) we have:

p � 4 logn+ 4dlog ke(log logn+ 2)

�

1

2

+ dlog ke

�

� log

2

k + 7 log k + 21

� 4 logn + 4dlog ke

2

log logn + 2dlog ke log logn+ 7 log

2

k + 11 log k + 33

Thus

p = 4 logn+O(log

2

k log logn):
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5 Periodi
 
orre
tion networks

In this se
tion we 
onsider the problem of sorting k-disturbed sequen
es with

the periodi
 networks of a 
onstant depth. We start in Se
tion 5.1 with a

presentation of a simple periodi
 1-
orre
tion network of depth 4 that works in

O(log n) iterations, and then in Se
tion 5.2 we present a periodi
 k-
orre
tion

network of depth 8 that works in O(k + logn) iterations.

5.1 A simple periodi
 1-
orre
tion network

In this se
tion we de�ne a simple 1-
orre
tion network H

l

on 2

l

� 2l registers

f0; : : : ; 2

l

� 2l � 1g.

We start with a de�nition of two auxiliary networks G

l

and G

0

l

. Let N

l

=

2

l

(l + 1).

De�nition 5.1 Let l be a positive integer. Let

g

l

: f0; : : : ; lg � f0; : : : ; 2

l

� 1g ! f0; : : : ; N

l

� 1g

be a bije
tion de�ned as follows:

g

l

(x; y) = x + (l + 1)y:

We assume that the registers are arranged in a matrix, where the register

g

l

(x; y) is pla
ed in 
olumn x and row y. (The rows and 
olumns are numbered

from zero.)

De�nition 5.2 For a positive integer l, we de�ne a network G

l

= CN(N

l

; 4; R; L),

where R = f0; : : : ; N

l

� 1g, L = (L

0

; L

1

; L

2

; L

3

), and (see Fig. 13):

� L

0

= f(g

l

(x; y); g

l

(x + 1; y + 2

l�x�1

)) j x is even; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� L

1

= f(g

l

(x; y); g

l

(x + 1; y)) j x is even; 0 � x < l; 0 � y < 2

l

g;

� L

2

= f(g

l

(x; y); g

l

(x + 1; y + 2

l�x�1

)) j x is odd; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� L

3

= f(g

l

(x; y); g

l

(x + 1; y)) j x is odd; 0 � x < l; 0 � y < 2

l

g:

We de�ne a network G

0

l

that is symmetri
al to G

l

:

De�nition 5.3 For a positive integer l and R = f0; : : : ; N

l

� 1g we de�ne a

network

G

0

l

= CN(N

l

; 4; R; (L

0

0

; L

0

1

; L

0

2

; L

0

3

));

su
h that for ea
h i, 0 � i � 3,

L

0

i

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 L

i

g;

where L

i

is the ith layer of the network G

l

.
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0L L 1 L 2 L 3

Figure 13: The layers of G

3

.

We arrange the registers of H

l

into a matrix that 
ontains in 
olumn x and

row y the register h

l

(x; y), where the fun
tion h

l

is de�ned as follows.

De�nition 5.4 Let l be a positive integer. Let

h

l

: f0; : : : ; 2l� 1g � f0; : : : ; 2

l

� 1g ! f0; : : : ; 2

l

� 2l� 1g

be a bije
tion de�ned as follows:

h

l

(x; y) = x + 2ly:

Below we de�ne two fun
tions m

l

and m

0

l

that are used for mapping the

layers of respe
tively G

l

and G

0

l

into H

l

.

De�nition 5.5 Let

m

l

: f0; : : : ; N

l

� 1g ! h

l

(fl� 1; : : : ; 2l � 1g � f0; : : : ; 2

l

� 1g)

and

m

0

l

: f0; : : : ; N

l

� 1g ! h

l

(f0; : : : ; lg � f0; : : : ; 2

l

� 1g)

(where h

l

(X � Y ) = fh

l

(x; y) j x 2 X; y 2 Y g) be two mapping fun
tions

de�ned as follows. For ea
h 0 � x � l, for ea
h 0 � y < 2

l

,

m

l

(g

l

(x; y)) = h

l

(x + l � 1; y)

and

m

0

l

(g

l

(x; y)) = h

l

(x; y):

The network H

l

is de�ned as follows.

De�nition 5.6 For a positive integer l we de�ne the network H

l

= CN(2

l

�

2l; 4; R; L

00

) (see Fig. 14), where R = f0; : : : ; 2

l

� 2l� 1g, L

00

= (L

00

0

; L

00

1

; L

00

2

; L

00

3

),

and:
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Figure 14: The network H

3

. The layers L

00

0

and L

00

1

are drawn with the solid

lines and the layers L

00

2

and L

00

3

are drawn with the dashed lines.

� For ea
h t 2 f0; 1; 2; 3g, the layer L

00

t


ontains the union of the m

l

-mapping

of L

t

and the m

0

l

-mapping of L

0

t

, where L

t

and L

0

t

are the tth layers of G

l

and G

0

l

respe
tively, and

� the layer L

00

1+2(l mod 2)


ontains additionally the set of 
omparators f(h

l

(2l�

1; y); h

l

(0; y + 1)) j 0 � y < 2

l

� 1g, and

� there are no other 
omparators in H

l

.

Note that the 
orresponding mappings of L

t

and L

0

t

, for t 2 f0; 1g are not

disjoint. (The two middle 
olumns of H

l

are in the images of both mappings.)

However, the de�nition is 
orre
t be
ause the 
omparators from the two map-

pings either are identi
al or 
ontain no 
ommon registers.

Note that the layers of H

l

are symmetri
al (i.e. there is a 
omparator (i; j)

in the layer L

00

t

if and only if there is a 
omparator (n� 1� j; n� 1� i) in the

same layer, where n = 2

l

� 2l is the number of registers).

Lemma 5.7 There exist a 
onstant d su
h that for any l > 0, the network H

l

sorts any 1-disturbed 
on�guration in dl iterations.

Proof. Let 
 be a 1-disturbed zero-one 
on�guration on the registers of H

l

.

Let z denote the number of zeroes in 
. Let y

0




= b

z

2l


. That is, y

0




is the index of

the �rst row of H

l

that interse
ts the ones area. (The rows are numbered from

zero.) Let r

t

be the �rst register 
ontaining a one after t steps of 
omputation of

H

l

(i.e. after appli
ation of the sequen
e of layers (L

00

0

: : : L

00

3

)

bt=4


L

00

0

: : : L

00

t mod 4

).

Let t

0

be the minimal t su
h that either r

t

� h

l

(0; y

0




) (i.e. the displa
ed 1 is

already in the row y

0




) or r

t

= h

l

(l � 1; y) for some y (i.e. r

t

is in the 
olumn

l � 1).
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Claim 5.8 t

0

� 4l.

The 
laim follows from the fa
t that there is at most one one above the row

y

0




, and as long as it is above the row y

0




it is shifted every two steps to the next


olumn on the right side or to the 
olumn 0 if it is in the 
olumn 2l � 1. (We

say that the 1 is moved to the next (modulo 2l) 
olumn on the right side.)

Let t

00

be a minimal step number t su
h that r

t

� h

l

(0; y

0




) � 1.

Claim 5.9 t

00

� t

0

+ 2l.

If r

t

0

� h

l

(0; y

0




), then t

00

� t

0

and the 
laim holds. Otherwise, assume that

r

t

0

is in the 
olumn l�1 above the row y

0




. The �rst layer that 
an move a single

displa
ed one from the register r

t

0

= h

l

(l � 1; y) is L

00

0

or L

00

1

. If the distan
e

between the row y and the row y

0




is greater than 2

l�1

, then the layer L

00

0

moves

the displa
ed one to the row y + 2

l�1

in the 
olumn l, otherwise L

00

1

moves the

displa
ed one to the register h

l

(l; y). In either 
ase the distan
e between the

displa
ed element and the row y

0




is not greater than 2

l�1

. In a similar way,

it 
an be shown by indu
tion that after the step t

0

+ 2t, where 1 � t � l, the

displa
ed one is in the 
olumn l � 1 + t and the distan
e between its row and

the row y

0




is at most 2

l�t

.

Claim 5.10 After 6l steps the 
on�guration is at most 2l + 2-dirty.

The 
laim follows from the fa
t that the network is symmetri
al, and after

6l steps the index of the �rst register that 
ontains a one is at least h

l

(0; y

0




)� 1

and the index of the last register that 
ontains a zero is at most h

l

(2l�1; y

0




)+1.

Now the lemma follows dire
tly from Claim 5.10 and Lemma 3.4. 2

For an arbitrary n > 0, we 
an 
onstru
t a 1-
orre
tion periodi
 network

of depth 4 for input sequen
es of size n as the f0; : : : ; n � 1g restri
tion of

the network H

l

0

, where l

0

is the minimal l su
h that 2

l

� 2l � n. Note that

l

0

2 O(log n).

It is not 
lear how does the networkH

l

work for the k-disturbed 
on�guration

for the larger values of k. It 
an be shown easily, by 
onsidering ea
h displa
ed

element separately that the upper bound on the time needed for sorting su
h a


on�guration is O(kl).

In the next se
tion we 
onstru
t a periodi
 network of a 
onstant depth that

sorts any k-disturbed 
on�guration in O(log n + k) iterations.

5.2 Periodi
 k-
orre
tion network

The main problem with the k-disturbed sequen
es in the network H

l

, for greater

values k, is that a displa
ed one that starts falling in the 
olumn l � 1 and is

blo
ked by the other displa
ed one, may need a full rotation through all the


olumns to get another 
han
e of falling down to the proper row. In this se
tion

we over
ome to some extend this problem.

The layers B

l;i

and B

0

l;i

, de�ned below, will be used in the des
ription of the

k-
orre
tion network.
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B
3,0

B
3,1

B’
3,0

B’
3,1

Figure 15: The layers B

3;i

and B

0

3;i

.

De�nition 5.11 For l > 0, we de�ne four layers B

l;0

, B

l;1

, B

0

l;0

, B

0

l;1

on the

registers f0; : : : ; N

l

� 1g as follows (see Fig. 15):

� B

l;0

= f(g

l

(x + 1; y); g

l

(x; y + 2

l�x�1

)) j x is even; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� B

l;1

= f(g

l

(x + 1; y); g

l

(x; y + 2

l�x�1

)) j x is odd; 0 � x < l; 0 � y <

2

l

� 2

l�x�1

g;

� B

0

l;0

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 B

l;0

g;

� B

0

l;1

= f(r

1

; r

2

) j (N

l

� 1� r

2

; N

l

� 1� r

1

) 2 B

l;1

g:

De�nition 5.12 For l > 0 and the register sequen
e R = f0; : : : ; N

l

� 1g we

de�ne F

l

and F

0

l

as follows (see Fig. 16):

� F

l

= CN(N

l

; 4; R; (L

1

; B

l;0

; L

3

; B

l;1

)), where L

1

and L

3

are the layers

introdu
ed in De�nition 5.2.

� F

0

l

= CN(N

l

; 4; R; (L

0

1

; B

0

l;0

; L

0

3

; B

0

l;1

)), where L

0

1

and L

0

3

are layers intro-

du
ed in De�nition 5.3.

Now we 
an des
ribe our main network. Let l > 1 and w

0

> 1 be integers.

Let w = 2(l+ 1 +w

0

), h = 2

l

and n = wh. Let R = f0; : : : ; n� 1g. We de�ne a

fun
tion

r : f0; : : : ; w � 1g � f0; : : : ; h� 1g ! f0; : : : ; n� 1g

by

r(x; y) = x + wy:

We arrange the registers in a matrix where the register r(x; y) is pla
ed in


olumn x and row y.
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F
3

F’
3

Figure 16: The networks F

3

and F

0

3

: the layers B

3;0

, B

3;1

of F

3

and the layers

B

0

3;0

, B

0

3;1

of F

0

3

are drawn with dashed lines.

We de�ne the following two mapping fun
tions m and m

0

that are used for

pla
ing the layers of F

l

and F

0

l

on the registers of our network. For 0 � x � l,

0 � y � 2

l

� 1,

m(g

l

(x; y)) = r(w=2 + x; y)

and

m

0

(g

l

(x; y)) = r(w=2 � l � 1 + x; y);

where g

l

is the fun
tion de�ned in De�nition 5.1.

Below we de�ne our main network P

l;w

0

. For this purpose, we des
ribe �rst

auxiliary sequen
es of layers Y = (Y

0

; Y

1

; Y

2

; Y

3

) and J = (J

0

; J

1

; J

2

; J

3

).

Let (A

0

; A

1

; A

2

; A

3

) denote the sequen
e of layers of F

l

and (A

0

0

; A

0

1

; A

0

2

; A

0

3

)

denote the sequen
e of layers of F

0

l

. Let Y = (Y

0

; Y

1

; Y

2

; Y

3

) be a sequen
e of

layers, su
h that Y

t

is the union of the m-mapping of A

t

and the m

0

-mapping

of A

0

t

(see Fig. 17). Note that in the matrix presentation (i.e. when the

register r(x; y) is pla
ed in 
olumn x and row y) Y 
ontains the mappings of

the layers of F

0

l

and F

l

, where the mapping of F

0

l

is pla
ed at the 
olumns

w=2� l� 1; : : : ; w=2� 1 (where the 
olumns are numbered from zero to w� 1)

and the mapping of F

l

is pla
ed at the 
olumns w=2; : : : ; w=2 + l. Note that the

layer Y

0


ontains only 
omparators of the form (r(x; y); r(x + 1; y)) while the

layer Y

1


ontains 
omparators of the form (r(x+1; y

1

); r(x; y

2

)), where the parity

of x is the same as the parity of w=2. The layer Y

2


ontains only 
omparators

of the form (r(x; y); r(x + 1; y)), while the layer Y

3


ontains 
omparators of the

form (r(x + 1; y

1

); r(x; y

2

)), where the parity of x is the same as the parity of

w=2 + 1.

Let J = (J

0

; J

1

; J

2

; J

3

) be a sequen
e of layers over R de�ned as follows (see

Fig. 18):
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w’ l +1 l +1 w’

Figure 17: The layers Y

i

for l = 3 and w

0

= 3. The layers Y

0

and Y

2

are drawn

with solid lines and the layers Y

1

and Y

3

are drawn with the dashed lines.

� J

0

= f(r(x; y); r(x + 1; y)) j 0 � y < h; (x +

w

2

) mod 2 = 0; (0 � x <

w=2� l � 1 or w=2 + l � x < w � 1)g;

� J

1

= f(r(x + 1; y); r(x; y + 1)) j 0 � y < h� 1; (x +

w

2

) mod 2 = 0; (0 �

x < w=2 � l� 1 or w=2 + l � x < w � 1)g;

� J

2

= f(r(x; y); r(x + 1; y)) j 0 � y < h; (x +

w

2

) mod 2 = 1; (0 � x <

w=2� l � 1 or w=2 + l � x < w � 1)g;

� J

3

= f(r(x + 1; y); r(x; y + 1)) j 0 � y < h� 1; (x +

w

2

) mod 2 = 1; (0 �

x < w=2 � l� 1 or w=2 + l � x < w � 1)g:

Note that the only 
olumns that 
ontain the registers used by the 
ompara-

tors from both J and Y are the 
olumns w=2� l � 1 and w=2 + l.

The layers M

0

, M

1

, M

2

, and M

3

that are de�ned below are presented on

Fig. 21 for the 
ase l = 3 and w

0

= 3. We de�ne the sequen
e of layers of P

l;w

0

as M = (M

0

;M

0

;M

1

;M

0

;M

2

;M

0

;M

3

;M

0

), where

� M

0

= f(r(x; y); r(w � 1� x; y)) j 0 � x < w=2g (see Fig. 19),

� for ea
h t, 0 � t � 3, the layer M

t


ontains Y

t

[ J

t

, and

� for (the unique) t 2 f0; 2g, su
h that J

t

does not 
ontain 
omparators

with registers from the leftmost and the rightmost 
olumn, M

t


ontains

the 
omparators f(r(w � 1; y); r(0; y + 1)) j 0 � y < h� 1g, and
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w’ l +1 l +1 w’

Figure 18: The layers J

i

for l = 3 and w

0

= 3. The layers J

0

and J

2

are drawn

with solid lines and the layers J

1

and J

3

are drawn with the dashed lines.

w’ l +1 l +1 w’

Figure 19: The layer M

0

(the left-right 
omparators) for l = 3 and w

0

= 3.
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� there are no other 
omparators in the layers of M .

We 
all the layers M

0

and M

2

and their 
omparators horizontal. (Despite

that the 
omparators of the form (r(w � 1; y); r(0; y + 1)) are slightly slanted,

they are also 
alled horizontal.)

M

1

and M

3

are 
alled ba
k-jump layers, and the 
omparators from these

layers are 
alled ba
k-jump 
omparators.

We 
all the layers M

0

left-right layers and their 
omparators left-right 
om-

parators.

Observe that P

l;w

0

has following property:

Fa
t 5.13 The horizontal 
omparators together with the left-right 
omparators

between 
olumns w=2� 1 and w=2, are all 
omparators of the odd-even transpo-

sition network on R.

Note that the layer M

0


ontains only 
omparators of the form (r(x; y); r((x+

1) mod w; y

0

)) while the layer M

1


ontains 
omparators of the form (r((x +

1) mod w; y

1

); r(x; y

2

)), where the parity of all x's is the same as the parity

of w=2. The layer M

2


ontains only 
omparators of the form (r(x; y); r((x +

1) mod w; y

0

)) while the layer M

3


ontains 
omparators of the form (r((x +

1) mod w; y

1

); r(x; y

2

)), where the parity of all x's is the same as the parity of

w=2 + 1.

The only pairs of 
onse
utive (modulo w) 
olumns that are not 
onne
ted

by the ba
k-jump 
omparators is w=2� 1, w=2, and w � 1, 0.

Fig. 20 presents a s
hemati
 view of the network P

l;w

0

. The subsets of

registers used by the 
omparators from Y (respe
tively from J) are drawn as

the boxes labeled by the letter Y (respe
tively J). The 
omparators that are

neither 
ontained in the layers of Y nor in the layers of J are drawn as the

arrows. The only left-right 
omparators depi
ted are the 
omparators between

the two middle 
olumns.

Fig. 21 presents the network P

l;w

0

for l = 3 and w

0

= 3 (without the left-right


omparators).

Fig. 22 presents P

3;3

in a folded state (i.e. the left half of the network has

been rotated 180 degrees around the 
entral verti
al axis in su
h a way that the

mirror re
e
tion of it is behind the right half of the network). The �gure also

presents the 
omparators between the 
olumns w � 1 and 0 (with the left-right


omparators drawn as dotted arrows).

We partition the set of registers R into the left set S

0

= fr(x; y) j 0 �

x � w=2 � 1g and the right set S

1

= fr(x; y) j w=2 � x � w � 1g. The

members of S

0

(respe
tively S

1

) are 
alled left (respe
tively right) registers.

For any register r = r(x; y), we de�ne a shadow of r, denoted by shd(r), as

the register r(w � 1 � x; y). Note that in the folded state, the shadow of ea
h

register r is pla
ed in the same pla
e as r, and that M

0


ontains 
omparators

of the form (shd(r); r). For any subset X � S we de�ne the shadow of X as

shd(X) = fshd(r) j r 2 Xg.
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.

.

.

.

.

.

the
leftmost
column

Y Y JJ

Figure 20: The layers of P

l;w

0

.

w’ l +1 l +1 w’

row  y’c

active

area

Figure 21: The network P

3;3

without the left-right 
omparators. The horizontal

layers are drawn with solid lines, while the ba
k-jump layers are drawn with

dashed lines.
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(a)                                                                       (b) 

row  

area

0columns

y’c

w’l +1

-1w

active

Figure 22: View of P

3;3

after folding the left half (a) and the 
omparator 
on-

ne
tions between the 
olumns 0 and w � 1 (b).
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5.2.1 Runtime analysis of P

l;w

0

Re
all that n = 2(l + 1 + w

0

) � 2

l

is the number of registers of P

l;w

0

.

Lemma 5.14 For k < w

0

=6, the network P

l;w

0

sorts any k-disturbed 
on�gura-

tion in O(w

0

+ l) iterations.

Let R, w, h, r, Y , J , M be de�ned as before. Let L = (L

0

; L

1

; L

2

; L

3

; L

4

; L

5

; L

6

; L

7

)

be the sequen
e of layers of P

l;w

0

. (i.e. L

1

= L

3

= L

5

= L

7

= M

0

and L

2i

= M

i

.)

Let C be the set of all 
omparators of P

l;w

0

.

It is enough to show that P

l;w

0

sorts any k-disturbed 
on�guration 
onsisting

of zeroes and ones in O(w

0

+ l) iterations. Let 
 be an arbitrary zero-one k-

disturbed 
on�guration of R. Let z be a number of zeroes in 
. Then y

0




= bz=w


is the index of the �rst row of registers that interse
ts the ones area. For t � 0,

let 


t

be a 
on�guration obtained after exe
ution of t steps of P

l;w

0

on 
.

Let 


0

be a 
on�guration of R de�ned as follows.




0

(r) =

8

<

:

0 if 
(r) = 0;

1 + jfp 2 R j p < r; 
(p) = 1gj if 
(r) = 1 and r = r(x; y) for y < y

0




;

k + 1 if 
(r) = 1 and r = r(x; y) for y � y

0




:

The 
on�guration 
 has at most k displa
ed ones. Thus in 


0

the registers

above the row y

0




, whi
h 
ontain displa
ed ones in 
, 
ontain the value from the

range f1; : : : ; kg, every value o

urring exa
tly on
e.

Let the sequen
es of the 
on�gurations 


0

t

and 


00

t

be de�ned as follows:

� 


00

0

= 


0

, and

� for t � 0, 


0

t

is the 
on�guration 


00

t

with all the values from the range

f1; : : : ; kg below the row y

0




� 1 repla
ed by the value k + 1.

� for t � 0, 


00

t+1

= L

t mod 8

(


0

t

).

The next 
laim follows dire
tly from the de�nitions introdu
ed:

Claim 5.15 For ea
h t � 0, the 
on�guration 


0

t

has the following properties:

1. For ea
h register r, 


t

(r) = 1 if and only if 


0

t

(r) > 0.

2. If a register r is above the row y

0




� 1, then 0 � 


0

t

(r) � k.

3. If a register r is below the row y

0




� 1, then 


0

t

(r) = 0 or 


0

t

(r) = k + 1.

4. For ea
h i 2 f1; : : : ; kg, there is at most one register r su
h that 


0

t

(r) = i.

We will show that all positive values of 


0

t

leave the region above the row

y

0




� 1 in O(l+w

0

) iterations. By Claim 5.15 that means that for some 
onstant

d, the 
on�guration 


d(l+w

0

)


ontains no ones above row y

0




� 1 and (sin
e the

network is symmetri
al and we have pla
ed no restri
tions on 
) 


d(l+w

0

)


ontains

no zeroes below y

0




+ 1. Thus 


d(l+w

0

)

is at most 3w-dirty and (by Fa
t 5.13 and

Lemma 3.4) will be sorted in the next O(w) = O(w

0

+ l) iterations.
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For t � 0, for ea
h pair of distin
t values q

1

and q

2

from the range f1; : : : ; kg

su
h that q

1

< q

2

, we say that the value q

1

has been blo
ked by the value q

2

in

the register r at step t if and only if there is a 
omparator (r; r

0

) 2 L

t mod 8

and 


0

t

(r) = q

1

and 


0

t

(r

0

) = q

2

. We say that the value q

1

has been pulled ba
k

from register r

0

to the register r by the value q

2

at step t if and only if there is

a 
omparator (r; r

0

) 2 L

t mod 8

and 


0

t

(r) = q

2

and 


0

t

(r

0

) = q

1

. (So then we get




0

t+1

(r) = q

1

and 


0

t+1

(r

0

) = q

2

)

Ba
k-jump paths and stoppers. Below, we start to investigate in detail

the �ne stru
ture of P

l;w

0

. We 
all the set of registers above the row y

0




an

a
tive area. The registers above the row y

0




are 
alled a
tive registers. We 
all

the a
tive registers with horizontal 
oordinates less than w=2 the left a
tive

registers. The remaining registers are 
alled the right a
tive registers. Let S

0

denote the set of a
tive registers and let S

0

0

= S

0

\ S

0

and S

0

1

= S

1

\ S

0

.

We 
all an right a
tive register r a ba
k-jump starter if and only if there

is no ba
k-jump 
omparator of the form (r

0

; r). We 
all an a
tive register r a

ba
k-jump stopper if and only if there is no ba
k-jump 
omparator of the form

(r; r

0

) su
h that r

0

is in the a
tive area. For ea
h ba
k-jump starter r, we de�ne

a ba
k-jump path of r as the longest sequen
e of a
tive registers (r

0

; : : : ; r

s

),

su
h that r

0

= r, and for 0 � t < s there is a ba
k-jump 
omparator (r

t

; r

t+1

).

Note that r

s

is a stopper, and that ea
h right a
tive register is on exa
tly one

ba
k-jump path.

On the Fig. 21, we depi
t the a
tive area for some 
on�guration 
. The

ba
k-jump stoppers are marked with the boxes. Observe that the length of ea
h

ba
k-jump path is not greater than w=2. (Indeed, 
olumn index of a starter is

not greater than w�1, the horizontal 
oordinate de
reases by one as we go from

one register of the ba
k-jump path to the next one, and all the a
tive registers

in 
olumn w=2 are stoppers.)

We 
onsider the positions of ea
h positive value in the a
tive area in the


on�gurations 


0

t

. We 
all the values from the range f1; : : : ; kg a
tive. Note

that ea
h a
tive value may disappear (be repla
ed by k + 1) if it is 
ompared

with a zero from outside the a
tive area.

Zones and the levels of registers. We partition the set S

0

1

into zones Z

i;j

and Z

0

i;j

de�ned as follows (see Fig. 23 (a)):

� for 0 � x � l � 1

Z

x;0

= fr(w=2+x; y) 2 S

0

1

j r(w=2 + x; y) is a stopper and y

0




� y > 2

l�1�x

g;

� for 0 � x � l � 1

Z

0

x;0

= fr(w=2+x; y) 2 S

0

1

j r(w=2 + x; y) is a stopper and y

0




� y � 2

l�1�x

g;

� for l � x � w=2� 1

Z

x;0

= fr(w=2 + x; y

0




� 1)g;
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(b)(a)      
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Z

1,4
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1,5

2,3

2,3

4,1

2,4

2,4

4,2

5,1

Z

Z’

Z’

Z

Figure 23: Partition of the right a
tive registers into the zones (a) and the levels

of the zones (b). The arrows on (b) represent the ar
s of the tree of zones T .

� for x

0

> 0

Z

x;x

0

= fr 2 S

0

1

j there is a ba
k-jump 
omparator (r; r

0

) su
h that r

0

2 Z

x;x

0

�1

g;

and

Z

0

x;x

0

= fr 2 S

0

1

j there is a ba
k-jump 
omparator (r; r

0

) su
h that r

0

2 Z

0

x;x

0

�1

g:

It follows dire
tly from the de�nition that ea
h zone is 
ontained in a single


olumn of registers. We 
all the stoppers from the zones Z

x;0

upper stoppers

and the stoppers from the zones Z

0

x;0

lower stoppers.

We de�ne a zones tree T as a dire
ted graph with the set of verti
es V =

fZ

x;x

0

jZ

x;x

0

6= ;g[fZ

0

x;x

0

jZ

0

x;x

0

6= ;g and the set of ar
s E = E

1

[E

2

(see arrows

on Fig. 23 (b)), where

E

1

= f(Z

x;x

0

+1

; Z

x;x

0

) 2 V � V g [ f(Z

0

x;x

0

+1

; Z

0

x;x

0

) 2 V � V g

and

E

2

= E

2;1

[ E

2;2

[ E

2;3

;

where

E

2;1

= f(Z

x;0

; Z

0

x;1

) 2 V � V j 0 � x � l � 1g;

and

E

2;2

= f(Z

0

x;0

; Z

x+1;0

) 2 V � V j 0 � x � l � 1g;
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and

E

2;3

= f(Z

x;0

; Z

x+1;0

) 2 V � V j l � x � w=2g:

Ar
s of E

1

are 
alled ba
k-jump ar
s and ar
s of E

2

are 
alled horizontal ar
s.

The arrows on Figure 23 (b) 
orrespond to the ar
s of the zones tree. The solid

arrows represent E

1

. The dashed arrows represent E

2;1

. The dotted arrows

represent E

2;2

and E

2;3

.

The root of T is Z

w=2�1;0

(i.e. the singleton 
ontaining the last register of

the a
tive area).

For ea
h zone Z 2 V we de�ne its level (denoted by level(Z)) as a distan
e

from the root in the zones tree T . For ea
h a
tive register r 2 S

1

, we de�ne

level(r) as the level of the zone 
ontaining r. For ea
h a
tive register r 2 S

0

we de�ne: level(r) = level(shd(r)). For ea
h a
tive value i, let level of i in


on�guration 


0

t

denote the level of a
tive register that 
ontains value i or zero

if i does not exist in 


0

t

. The levels of the zones are displayed on Fig. 23 (b).

Claim 5.16 The maximal vertex level in the tree T is O(w

0

+ l).

Proof. Consider the path from an arbitrary vertex of T to the root of T .

First we make some t

1

steps by the ba
k-jump ar
s, until we rea
h the �rst zone


onsisting of the stoppers. Thus 0 � t

1

� w=2, sin
e we 
an go through at most

w=2 
olumns leftwards. Then, while we are in the l leftmost 
olumns of S

0

1

,

we need at most two steps to advan
e from the zone of upper stoppers to the

zone of lower stoppers in the same 
olumn, and then we make three steps ea
h

time to go from the zone of lower stoppers to the zone of lower stoppers in the

next 
olumn on the right side. As soon as we enter any zone of stoppers in the


olumns w=2 + l; : : : ; w � 1, we go to the next 
olumn on the right side during

ea
h single step. 2

Let l

0

T

denote the maximal level of a (non-empty) zone in T . We partition the

set of levels into layers of levels. Note that for 0 < x < l, we have level(Z

0

x�1;0

)�

level(Z

0

x;0

) = 3. Let b = level(Z

0

0;0

) mod 3. We de�ne the ith layer of levels as

L

i

= fj j 3i+ b � j < 3(i+ 1) + bg:

The zones with the levels in the odd and in the even layers have been depi
ted

by di�erent shades on the Fig. 23. Note that by the de�nition of b, the level of

ea
h zone Z

0

x;0

is a minimum of some layer of levels.

For ea
h l � 0, we de�ne the set of registers A

l

as follows:

A

l

= fr 2 S

0

1

j level(r) � lg:

Thus A

l

is the union of the zones with the levels not greater than l. Note also

that A

l

0

T

= S

0

1

and A

0

= Z

w=2�1;0

.

The following three 
laims follow from the de�nition of the network and from

the de�nitions of the zones and the levels of the a
tive registers.

Claim 5.17 If (r; r

0

) is a 
omparator su
h that r and r

0

are a
tive registers,

then one of the following 
ases holds:
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1. (r; r

0

) is a left-right 
omparator and r

0

= shd(r) and hen
e level(r) =

level(r

0

).

2. (r; r

0

) is a horizontal 
omparator and r; r

0

2 S

0

1

, and either level(r

0

) =

level(r) � 1, or r 2 Z

0

x;0

and r

0

2 Z

0

x+1;0

for some 0 � x � l � 2 and

level(r

0

) = level(r) � 3, or there is a ba
k-jump ar
 in T from the zone


ontaining r

0

to the zone 
ontaining r and level(r

0

) = level(r) + 1.

3. (r; r

0

) is a horizontal 
omparator and r; r

0

2 S

0

0

, and either level(r

0

) =

level(r) + 1, or r 2 shd(Z

0

x+1;0

) and r

0

2 shd(Z

0

x;0

) for some 0 � x � l� 2

and level(r

0

) = level(r)+3, or there is a ba
k-jump ar
 in T from the zone


ontaining shd(r) to the zone 
ontaining shd(r

0

) and level(r

0

) = level(r)�

1.

4. (r; r

0

) is a horizontal 
omparator and r is in 
olumn w � 1 and r

0

is in


olumn 0, and level(r

0

) = level(r) � 2 or level(r

0

) = level(r).

5. (r; r

0

) is a ba
k-jump 
omparator and r; r

0

2 S

0

1

, and level(r

0

) = level(r)�1.

6. (r; r

0

) is a ba
k-jump 
omparator and r; r

0

2 S

0

0

, and either level(r

0

) <

level(r) or level(r

0

) = level(r) + 1. The se
ond 
ase is only possible if the

zones Z

1

and Z

2


ontaining respe
tively shd(r) and shd(r

0

) are 
onne
ted

by the ar
 (Z

2

; Z

1

) in T (see the following �gure).

Z 1

Z 2
r

r’

Claim 5.18 If r 2 S

0

1

and level(r) > 0, then there is a horizontal or ba
k-

jump 
omparator (r; r

0

) su
h that r

0

2 S

0

1

and either level(r

0

) = level(r) � 1 or

level(r

0

) = level(r)� 3. The 
ase level(r

0

) = level(r)� 3 o

ur only when r is in

the lower half of Z

0

x;0

and r

0

2 Z

0

x+1;0

, for some 0 � x � l � 2, and (r; r

0

) is a

horizontal-
omparator.

Claim 5.19 Let i 2 f0; 4g (i.e. L

i

is a horizontal layer). For ea
h 
omparator

(r; r

0

) 2 L

i

\ (S

0

1

� S

0

1

) su
h that level(r

0

) = level(r) + 1, there is a ba
k-jump


omparator (r

0

; r

00

) 2 L

i+2

\ (S

0

1

� S

0

1

) su
h that level(r

00

) = level(r).

Releasing the layers of register levels by the displa
ed values. For

ea
h t � 0, for 1 � i � k, we say that a register r is released from the value i at

step t if and only if for ea
h t

0

� t, 


0

t

(r) 6= i.

To 
on
eive the idea used in the analysis of this part of the 
omputation


onsider the following simple example: Suppose we have an odd-even transpo-

sition sorting network (see De�nition 3.2) with a 
on�guration 
onsisting of the
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k positive values: 1; : : : ; k, pla
ed in arbitrary registers and zeroes pla
ed in

all the remaining registers. Note that at the �rst 
omputation step (i.e. after

applying the �rst layer), the �rst register is released from the greatest value (i.e.

from k). After the se
ond step the �rst and the se
ond registers are released

from the value k and thus after the third step the �rst register is released from

k � 1. In su
h a way we 
an de�ne for any t � 0 and i < k the set of registers

that must be released from the value k� i at step t. Note that the border of the

area that must be released from the value k� i� 1 is adja
ent to the border of

the area that must be released from the value k � i. In our network we use the

subsets A

l

for a 
onstru
tion of analogous sets.

Re
all that by a step we mean an appli
ation of a single layer of the network

to the 
urrent 
on�guration, while by an iteration we mean the appli
ation of

the entire sequen
e of layers of a periodi
 network.

Re
all also that ea
h a
tive value may disappear, thus releasing all a
tive

registers. For the simpli
ity, we skip this 
ase in the proofs of the following


laims.

In the following we assume that w

0

� 6k.

The aim of the �rst phase of the 
omputation is to move ea
h positive value

i in the a
tive region into

A

6(k�i)+6

[ shd(A

6(k�i)+6

) � A

w

0

[ shd(A

w

0

):

Claim 5.20 Let t � 0 and j > 0 be integers. For ea
h a
tive value i, if all a
tive

registers outside A

maxL

j

[shd(A

minL

j

) are released from the values greater than

i at step t, and i is inside A

minL

j+1

[ shd(A

minL

j+1

) in 
on�guration 


0

t

, then

all a
tive registers outside A

maxL

j+1

[ shd(A

minL

j+1

) are released from i at step

t.

Proof. We have to show that if the values greater than i remain in the area

A

maxL

j

[shd(A

minL

j

), and the value i is inside A

minL

j+1

[shd(A

minL

j+1

), then

i will never leave A

maxL

j+1

[ shd(A

minL

j+1

).

Assume that the values greater than i have released all a
tive registers that

are outside A

maxL

j

[ shd(A

minL

j

).

Fa
t 5.21 If the value i is in the shd(A

minL

j+1

), then as soon as it leaves

shd(A

maxL

j

) it must enter S

1

in at most one more (left-right) step and it 
an

enter S

1

only inside A

minL

j+1

.

The �rst part of the fa
t is implied by the fa
t that all a
tive registers outside

A

maxLj

are released from the values greater than i.

The se
ond part of the fa
t follows from the de�nition of L

j

and of the levels

of the zones: The value i 
an enter S

0

n shd(A

maxL

j

) only by being pulled ba
k

by some greater value (with a horizontal 
omparator between 
olumns w�1 and

0) dire
tly to A

maxL

j

� A

minL

j+1

or by going forward through the 
omparators

that have the �rst endpoint in shd(A

maxL

j

) and the se
ond endpoint in S

0

n

shd(A

maxL

j

). In the se
ond 
ase i either enters A

maxL

j

� A

minL

j+1

through

some left-right 
omparator or enters shd(A

minL

j+1

)nshd(A

maxL

j

) through some
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omparator 
ontained in S

0

0

� S

0

0

. (Note that by the Claim 5.17 (6) the ba
k-

jump 
omparator 
an in
rease the level of the register 
ontaining i by at most

one, and by the de�nition of L

j

, the horizontal 
omparator from S

0

0

� S

0

0


an

not move i dire
tly outside shd(A

minL

j+1

).)

Fa
t 5.22 If the value i is in the A

minL

j+1

, then it 
annot be moved outside

A

minL

j+1

+1

[ shd(A

minL

j+1

).

The 
omparators that 
an move the value i from A

minL

j+1

to S

0

1

nA

minL

j+1

must have the �rst endpoint in A

minL

j+1

and the se
ond endpoint outside

A

minL

j+1

in S

0

1

. The only su
h 
omparators are the horizontal 
omparators with

the �rst register in A

minL

j+1

and the se
ond register in A

minL

j+1

+1

nA

minL

j+1

.

But, by the Claim 5.19, as soon as i is moved to A

minL

j+1

+1

n A

minL

j+1

, it is

moved ba
k to the zone with the level minL

j+1

by the following ba
k-jump step,

sin
e the zones with the level minL

j+1

are released from the values greater than

i. If the value i leaves S

1

, then it must be shifted by a horizontal 
omparator

from the 
olumn w � 1 to the 
olumn 0 to the shadow of the zone with not

greater level or be pulled ba
k by a greater value somewhere inside shd(A

minL

j

)

through some left-right 
omparator. 2

Claim 5.23 Let t � 0 and j > 0 be integers. For ea
h a
tive value i, if

all a
tive registers outside A

maxL

j

[ shd(A

minL

j

) are released from the values

greater than i at step 8t (i.e. after iteration t), and the a
tive registers outside

A

maxL

j+2

[shd(A

minL

j+2

) are released from i at step 8t, then after iteration t+6

(i.e. after step 8(t+ 6)), the a
tive registers outside A

maxL

j+1

[ shd(A

minL

j+1

).

are released from the value i.

Proof. Assume that after iteration t we have all a
tive registers outside

A = A

maxL

j

[ shd(A

minL

j

) released from the values greater than i and i has

released all a
tive registers outside A

maxL

j+2

[ shd(A

minL

j+2

)

We show that within the next 6 iterations the value i visits some register

from A

0

= (A

minL

j+1

[ shd(A

minL

j+1

)). By Claim 5.20, as soon as i enters A

0

it releases all a
tive registers that are outside A

maxL

j+1

[ shd(A

minL

j+1

).

If after iteration t, the value i is inside (A

maxL

j+2

[ shd(A

minL

j+2

)) n A

0

;

then in at most the next 2 steps it must either:

� enter A

0

, or

� be moved by the �rst left-right layer to A

maxL

j+2

nA

minL

j+1

, sin
e it 
an

not be blo
ked by any greater value outside A

0

.

After that either:

� i starts being moved by the ba
k-jump 
omparators in S

1

, or

� (if i is in the 
olumn w � 1) i 
an be moved by the next horizontal layer

to shd(A

maxL

j+2

) and then (if i is still outside A

0

) ba
k to A

maxL

j+2

by

the following left-right layer, or

63



� i 
an be moved by the next horizontal layer to some register in S

0

1

with the

level not greater than maxL

j+2

(sin
e the registers with the levels greater

than maxL

j+2

are released from i).

After that (if i is still in A

maxL

j+2

n A

minL

j+1

) the value i is moved only

by the ba
k-jump 
omparators inside S

1

until i enters A

minL

j+1

or rea
hes a

stopper. (Ea
h su
h ba
k-jump step happens every four 
omputation steps and

de
reases level of i by at least 1.)

If i is still inside A

maxL

j+2

n A

minL

j+1

, then in the next iteration it starts

moving through either horizontal or ba
k-jump 
omparators in S

0

1

until it enters

A

minL

j+1

. Indeed, ea
h time i is moved in this phase, the level of i is de
reased

either by 1 (if i is moved by a ba
k-jump or horizontal 
omparator from a zone

Z

1

to Z

2

su
h that (Z

1

; Z

2

) is an ar
 in the tree of zones T ) or by 3 (if, for

some x < l � 1, i is moved from the lower half of the zone Z

0

x;0

to Z

0

x+1;0

by a

horizontal 
omparator). Note that if Z

0

x+1;0

� A, then Z

0

x;0

� A

minL

j+1

, sin
e

the levels of zones of lower stoppers are minimal within their layers of levels.

Thus, i 
annot be blo
ked by a greater a
tive value unless it is in A

0

.

We have shown that latest of all at the se
ond iteration following the iteration

t, the level of i starts being de
reased by at least 1 ea
h iteration. Sin
e the

initial level is not greater than maxL

j+2

and maxL

j+2

� minL

j+1

= 5, the

total number of the iterations needed to move i to A

minL

j+1

is not greater than

6. 2

For t � 0, for 1 � i � k we de�ne the the tth level limit for i, denoted l

t;i

as

follows:

l

t;i

= maxL

maxf2(k�i);l

0

T

�t+2(k�i)g

:

Claim 5.24 Let t � 0. For ea
h i, 1 � i � k, the a
tive registers outside

A

l

t;i

[ shd(A

l

t;i

�2

) are released from the value i after the iteration 6 � t.

Proof. Let 1 � i � k. For t = 0, we haveA

l

0;i

[shd(A

l

0;i

�2

) = A

maxL

l

0

T

+2(k�i)

[

shd(A

maxL

l

0

T

+2(k�i)

�2

) = A

3(l

0

T

+2(k�i))+b+2

[ shd(A

3(l

0

T

+2(k�i))+b

) = S

0

1

[ S

0

0

=

S

0

: Thus we have proven the 
ase t = 0 for all the values i, 1 � i � k.

For the 
ase i = k, 
onsider the behavior of the value k in the a
tive area.

After the �rst iteration k must be pla
ed in S

1

outside the 
olumn w�1 (if it is

above the row y

0




�1) and it remains there, sin
e there is no greater value in the

a
tive area that 
ould pull it ba
k to S

0

. Then at the next ba
k-jump step with

the 
omparators that have the �rst registers in the zone 
ontaining k, the value

k starts to travel through the zones of S

1

to the root of T . During ea
h step of

the travel, the value k either is moved to the zone 
onne
ted with its 
urrent

zone by an ar
 or if it is in the lower half of some zone Z

0

x;0

, for 0 � x � l � 2,

to the zone Z

0

x+1;0

. At least one step of the travel is performed during ea
h

iteration.

Thus after the �rst iteration all the a
tive registers that are outside A

3l

0

T

�1

=

A

l

0

T

are released from the value k. After the tth iteration (and hen
e after the

iteration 6t) all the a
tive registers that are outside A

maxf0;3l

0

T

�tg

are released
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from the value k. Sin
e

A

maxf0;3l

0

T

�tg

� A

l

t;k

[ shd(A

l

t;k

�2

)

the 
ase i = k has been proven.

Let 1 � i < k and t > 1. By the indu
tion hypothesis, all a
tive reg-

isters outside A

l

t�1;i

[ shd(A

l

t�1;i

�2

) are released from i after 6(t � 1) iter-

ations and all the a
tive registers outside A

l

t�1;i+1

[ shd(A

l

t�1;i+1

�2

) are re-

leased from the values greater than i after 6(t� 1) iterations. We have l

t�1;i

=

maxL

maxf2(k�i);l

0

T

�t+1+2(k�i)g

and l

t�1;i+1

= maxL

maxf2(k�i�1);l

0

T

�t+1+2(k�i�1)g

.

Let j = maxf2(k�i�1); l

0

T

�t+1+2(k�i�1)g. Thus all a
tive registers outside

A

maxL

j

[ shd(A

minL

j

) are released from the values greater than i at step t, and

a
tive registers outside A

maxL

j+2

[ shd(A

minL

j+2

) are released from i at step t,

and by the Claim 5.23, the a
tive registers outside A

maxL

j+1

[ shd(A

minL

j+1

)

are released from the value i within the next 6 iterations. 2

Corollary 5.25 For ea
h i, 1 � i � k, the a
tive registers that are outside

A

maxL

2(k�i)

[ shd(A

minL

2(k�i)

) are released from the value i after 6l

0

T

iterations.

Note that maxL

2(k�i)

= 6(k � i) + b + 2. Thus after 6l

0

T

iterations of


omputation all positive values will remain in the zones with levels not greater

than 6k � 4 + b and their shadows. Sin
e b � 2 and w

0

� 6k, all those zones

are the singletons in A

w

0

[ shd(A

w

0

) in the rightmost w

0


olumns (in the folded

version of P

l;w

0

). The 
onne
tions between the registers in this part of the

network have a very regular stru
ture. We use this regularity to show that all

positive values will 
ow into the row y

0




� 1 in the next O(w

0

) iterations.

The following 
laim is a 
olle
tion of some properties of (A

w

0

[ shd(A

w

0

))-

restri
tion of the network, useful in the analysis of the next two phases of the

network 
omputation.

Claim 5.26 1. shd(A

w

0

) is 
ontained in the 
olumns 0; : : : ; w

0

� 1,

2. A

w

0

is 
ontained in the 
olumns w � w

0

; : : : ; w � 1,

3. A

w

0

[shd(A

w

0

) is 
ontained in the rows y

0




�1; : : : ; y

0




�1�maxfy j w

0

� 2yg

4. For 0 � i � maxfy j w

0

� 2yg, for 0 � j � w

0

� 2i, level(r(w � 1� j; y

0




�

1� i)) = level(r(j; y

0




� 1� i)) = j + 2i:

5. For ea
h r(x; y) 2 shd(A

w

0

), there is a left-right 
omparator (r(x; y); shd(r(x; y)))

and level(shd(r(x; y))) = level(r(x; y)):

6. For ea
h r(x; y) 2 A

w

0

su
h that y < y

0




�1, there is a ba
k-jump 
ompara-

tor (r(x; y); r(x � 1; y + 1)) and level(r(x � 1; y + 1)) = level(r(x; y)) � 1:

7. For ea
h r(x; y) 2 A

w

0

su
h that x < w�1, there is a horizontal 
ompara-

tor (r(x; y); r(x + 1; y)) and level(r(x + 1; y)) = level(r(x; y)) � 1:

8. For ea
h 
omparator (r; r

0

) 2 A

w

0

�A

w

0

, level(r

0

) = level(r) + 1.
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9. There is a 
omparator (r(w� 1; y

0




� 2); r(0; y

0




� 1)). (The entran
e to the

shadow of last row of A

k

.)

10. For ea
h 0 � i < k, there is a 
omparator (r(i; y

0




� 1); r(i + 1; y

0




� 1)).

(The existen
e of the Hamiltonian path of 
omparators in the shadow of

the last row of A

k

.)

Proof. The properties listed follow dire
tly from the de�nition of the levels

of registers. 2

We start the se
ond phase of 
omputation with a 
on�guration where ea
h

positive value i, 1 � i � k is inside A

6(k�i)+b+2

or its shadow, or does not exist,

and our aim is to obtain a 
on�guration su
h that ea
h i, 1 � i � k is inside

A

k�i

. The se
ond phase is very similar to the �rst phase, but the part of a

network o

upied by the a
tive values in the se
ond phase has a very simple

stru
ture.

Claim 5.27 Assume that we start some iteration of the se
ond phase with a


on�guration su
h that for some j, 0 � j � w

0

, for ea
h i, 1 � i � k, the

a
tive registers outside A

maxfk�i;j�2ig

[ shd(A

maxfk�i;j�2ig

) are released from

the value i. Then after the next iteration for ea
h i, 1 � i � k, the a
tive

registers outside A

maxfk�i;j�1�2ig

[ shd(A

maxfk�i;j�1�2ig

) are released from i.

Proof. For the value k the 
laim is obvious, sin
e k is never blo
ked

in the a
tive region. Consider any i < k. The registers that are outside

A

maxfk�i�1;j�2i�2g

[ shd(A

maxfk�i�1;j�2i�2g

) are released from all the values

greater than i, and i must be inside A

maxfk�i;j�2ig

[ shd(A

maxfk�i;j�2ig

). If i

is outside A

maxfk�i;j�2i�2g

[ shd(A

maxfk�i;j�2i�2g

), then (after last left-right

step of the previous iteration) i must be pla
ed in some register with the level

maxfk� i; j�2ig or maxfk� i; j�2i�1g in S

0

1

and by the Claim 5.26 (points 6

and 7) there is a 
omparator that moves it to the register in the A

maxfk�i;j�2i�1g

unless i is already there. 2

Corollary 5.28 After O(w

0

) iterations of the se
ond phase, ea
h a
tive value

i has released a
tive registers that are outside A

k�i

[ shd(A

k�i

).

Proof. The 
orollary follows from Claim 5.27. 2

Note that after the last left-right step of the last iteration the value k (if still

exists) must be in the only register of A

0

. The value k � 1 
an be in one of the

four registers of A

1

[ shd(A

1

). We add one more iteration to the se
ond phase

to ensure that k � 1 is moved to A

1

. (We will use this in the proof of Claim

5.32.)

Final smoothing of displa
ed elements. The third phase we start in a


on�guration, where ea
h positive a
tive value i is inside A

k�i

[ shd(A

k�i

) or

does not exist. (Moreover, k and k � 1 are in A

0

and A

1

respe
tively.)

We modify slightly the de�nition of the 
on�gurations 


0

t

in the third phase

of the 
omputation: If t is the number of the 
omputation step in the third phase

66



of the 
omputation, then 


0

t

is obtained from the 
on�guration 


00

t

by repla
ing

all positive values below the a
tive area and in the last row of A

k

with the value

k + 1.

Our aim is to obtain all a
tive values inside the row y

0




� 1. Let B denote

the last row of A

k

and let B

0

= shd(B) (i.e. B and B

0

are 
ontained in the

row y

0




� 1). All a
tive values are inside A = A

k

[ shd(A

k

). The third phase

will move all a
tive values to the lowest row of A. There are many ways the

a
tive values 
an enter the last row of A, however we 
on
entrate only on the

horizontal 
omparator (r(y

0




� 2; w� 1); r(y

0




� 1; 0)) (mentioned as the entran
e

to the shadow of the last row in point 9 of Claim 5.26). To ea
h register r in

A we assign a label q(r) that may in
rease during the 
omputation. The label

q(r) is either integer value or an integer value plus 0:5, and k� q(r) is an upper

bound on the positive value that 
an still appear in r. Sin
e all positive values

that enter B are immediately repla
ed by k+1, the registers of B 
an have label

�1. The values k and k � 1 are in B already before the third phase. Thus all

the registers in B

0

are released from k and k� 1 and 
an be initially labeled by

1:5. The registers in A n (B [B

0

) have the initial labels equal to their levels. If

for some r 2 A there is a ba
k-jump or horizontal 
omparator inside A

k

or the

entran
e to B

0

, of the form (r; r

0

) or (shd(r); r

0

) su
h that q(r) � q(r

0

) = 0:5,

then either:

� the value k�q(r) is an integer and the register r

0

is released from k�q(r)+1

(thus the value k � q(r) 
an move from r to r

0

in at most single iteration

and we 
an then in
rease q(r) by 0:5.), or

� the value k � q(r) is not an integer and we 
an in
rease q(r) to the next

greater integer (by adding the value 0:5) without destroying the upper

bound on the positive values that 
an be in r.

In a similar way we 
an in
rease the labels of registers in B

0

with the use of

horizontal 
omparators 
ontained in B

0

.

Here is a more formal de�nition of the labels. We assign the labels q

t

(r) to

the registers r of A

k

[ shd(A

k

) as follows:

� For r 2 B, for all t � 0:

q

t

(r) = �1:

� For r 2 B

0

:

q

0

(r) = 1:5:

� For r 62 B [ B

0

:

q

0

(r) = level(r):

� For t > 0:

q

t

(r(w � 1; y

0




� 2)) = q

t�1

(r(w � 1; y

0




� 2)) + 0:5

and

q

t

(r(0; y

0




� 2)) = q

t�1

(r(0; y

0




� 2)) + 0:5
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Figure 24: The labeling of the registers of (A

k

n B) [ B

0

of the folded P

l;w

0

,

where k = 4, for the subsequent values of t.

and

q

t

(r(0; y

0




� 1)) = q

t�1

(r(0; y

0




� 1)) + 0:5:

� For t > 0, for r(x; y) 2 B

0

, x > 0:

q

t

(r(x; y

0




� 1)) = q

t�1

(r(x � 1; y

0




� 1)):

� For t > 0, and r 2 A

k

nB:

if there is a horizontal or ba
k-jump 
omparator (r; r

0

) su
h that r

0

2 A

k

nB

and q

t�1

(r

0

) = q

t�1

(r) � 0:5, then

q

t

(r) = q

t�1

(r) + 0:5

and

q

t

(shd(r)) = q

t�1

(shd(r)) + 0:5

else

q

t

(r) = q

t�1

(r)

and

q

t

(shd(r)) = q

t�1

(shd(r))

For t � 0, we de�ne the set Q

t;i

as follows:

Q

t;i

= fr 2 A

k

[ shd(A

k

) j q

t

(r) � ig:

Claim 5.29 For ea
h t � 0, for ea
h i > 2, if Q

t+1;i

n(B[B

0

) 6= Q

t;i

n(B[B

0

),

then either there exists a register r 2 A

k

above the row y

0




� 1 su
h that q

t

(r) =

i� 0:5 or the only registers with the label q

t

equal to i are r(w � 1; y

0




� 2) and

shd(r(w � 1; y

0




� 2)).
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Proof. The 
laim follows from the de�nition of the labels. 2

Claim 5.30 For ea
h t > 0, if for some integer i there is a register above the

row y

0




� 1 with the label q

t

equal to i + 0:5, then ea
h register above the row

y

0




� 1 with the label q

t

equal to i+ 1 is either the �rst register or the shadow of

the �rst register of the horizontal or ba
k-jump 
omparator 
ontained in S

0

1

�S

0

1

with the se
ond register having the label q

t

equal to i+ 0:5.

Proof. The 
laim follows from the regular stru
ture of the 
omparator


onne
tions in A

k

and from the de�nition of the labels q

t

. All the registers with

the same level in A

k

above the row y

0




� 1 must have the same label q

t

and the

registers with the greater levels must have greater values of the labels. Thus if

the registers above the row y

0




� 1 with the level j < k have the label q

t

equal

to i+ 0:5, then the registers above the row y

0




� 1 with the level j+ 1 must have

the label q

t

equal to i+ 1 and there are no other registers above the row y

0




� 1

with the same label. 2

Claim 5.31 The set Q

2k;k

is 
ontained in the row y

0




� 1.

Proof. Consider the area above the row y

0




� 1. We may treat the fra
tion

\0:5" as the signal that is emitted every step from the pair of registers r(w �

1; y




� 2), shd(r(w � 1; y




� 2)), and is broad
ast to other registers in A

k

above

the row y

0




� 1 and their shadows by the horizontal and ba
k-jump 
omparators


ontained in S

0

1

. (The 
omparator (r; r

0

) broad
asts the signal from r

0

to r. The

arrows on the Fig. 24 denote the 
omparators used for broad
asting.) On
e

the register re
eives the \0:5" signal, it starts the pro
ess of in
reasing its label

by 0:5 every step. On
e the \0:5" signal rea
hes the registers with level k (i.e.

after k� 1 steps), the area of registers with the labels not greater than k starts

shrinking. During ea
h step all the labels k are repla
ed by the labels k + 0:5

and the labels k are pla
ed on the registers that had the labels k � 0:5 and are

\one 
omparator 
loser" to r(w � 1; y




� 2) or shd(r(w � 1; y




� 2)). 2

Claim 5.32 After t iterations of the third phase, ea
h a
tive value i, has re-

leased all a
tive registers outside Q

t;k�i

.

Proof.

The values k and k�1 are in the registers r(w�1; y

0




�1) and r(w�2; y

0




�1)

after the se
ond phase. (Re
all that we have added one more iteration to the

se
ond phase, to ensure that k � 1 is also in A

1

.)

For t = 0, for 2 � i � k, ea
h register with the level i has the label q

0

not greater than i, thus after the se
ond phase the value k � i must be in

Q

0;i

� A

i

[ shd(A

i

).

Consider the value k� 2. After the last left-right step of the se
ond phase it

must be either in r(w � 3; y

0




� 1) or in shd(fr(w � 1; y

0




� 1); r(w � 2; y

0




� 1)g)

(or in fr(w � 1; y

0




� 1); r(w � 2; y

0




� 1)g if some of the greater values do not

exist) or in the register r(w � 1; y

0




� 2). In the last 
ase, the �rst horizontal

step 
ontaining the 
omparator (r(w � 1; y

0




� 2); r(0; y

0




� 1)) moves k � 2 to
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the shadow of the last row of A

k

(i.e to B

0

). As soon as k � 2 is in B

0

, it is

moved unblo
ked by the subsequent horizontal steps until it is in the shadow of

some register of B with the value 0, and then by the left-right step is moved to

B and repla
ed by k + 1. (Note that the length of B and B

0

is k and there are

at most k positive values in B [B

0

and hen
e k � 2 must meet some zero in B

while it is in B

0

.) Anyway k � 2 will never be pulled ba
k out of Q

t;2

after the

tth iteration.

Let t � 0. (If t = 0, then the iteration t is the last iteration of the se
ond

phase.) Consider the pla
ement of arbitrary positive value i, 1 � i � k�3 after

the iteration t.

If i is inside Q

t;k�i

n (B [ B

0

[ Q

t+1;k�i

), then i is (after the last left-right

step of the iteration t) in S

0

1

in some register r above the row y

0




� 1 su
h that

q

t

(r) = k�i. There are no 
omparators (r; r

0

) 2 S

0

1

�S

0

1

su
h that q

t

(r) < q

t

(r

0

).

If r 6= r(w � 1; y

0




� 2), then by the Claims 5.29 and 5.30 there is a ba
k-jump

or horizontal 
omparator (r; r

0

) su
h that q

t

(r

0

) = q

t

(r) � 0:5, thus the value

k� i must be moved in the iteration t+ 1 to some register with the label q

t

not

greater than k� i� 0:5. If r = r(w� 1; y

0




� 2), then the horizontal 
omparator

(r(w � 1; y

0




� 2); r(0; y

0




� 1)) moves k � i in the iteration t + 1 to B

0

.

If i is inside Q

t;k�i

\ B

0

n Q

t+1;k�i

, then in the iteration t + 1 either i will

be moved to the next register of B

0

or it will be moved to B and repla
ed by

k + 1.

The following fa
t ensures that the value i will not leave Q

t+1;k�i

during the

iteration t+ 1 and later.

Fa
t 5.33 For ea
h 
omparator (r; r

0

) su
h that q

t

(r) < q

t

(r

0

), we have r 2

shd(A

k

n B) and r

0

2 shd(A

k

n B), and (r; r

0

) is a horizontal 
omparator and

q

t+1

(r

0

) = q

t

(r) + 1.

The fa
t that r 2 shd(A

k

n B) and r

0

2 shd(A

k

n B) and that (r; r

0

) is a

horizontal 
omparator follows from the de�nition of q

t

and from the stru
ture of

A

k

-restri
tion of the network: If q

t

(r) < q

t

(r

0

) then (r; r

0

) must be above B[B

0

,

sin
e for ea
h t the labels in B

0

[ B are less than any labels in A

k

[ shd(A

k

) n

(B

0

[B). On the other hand if r; r

0

2 A

k

[ shd(A

k

)n (B

0

[B) and q

t

(r) < q

t

(r

0

)

then level(r) < level(r

0

). The only 
omparators (r; r

0

) inside A

k

[ shd(A

k

) su
h

that level(r) < level(r

0

) are the horizontal 
omparators inside shd(A

k

).

Let us show that q

t+1

(r

0

) = q

t

(r) + 1. We have either q

t

(r

0

) � q

t

(r) = 1 or

q

t

(r

0

)� q

t

(r) = 0:5. In the �rst 
ase, q

t+1

(r

0

)� q

t

(r) = q

t

(r

0

)� q

t

(r) = 1. (Note

that in this 
ase the se
ond endpoint of the ba
k-jump 
omparator starting in

shd(r

0

) has also the label q

t

less than q

t

(r

0

) � 0:5 and the label of r

0

remains

un
hanged.) In the se
ond 
ase, q

t+1

(r

0

) � q

t

(r) = (q

t

(r

0

) + 0:5)� q

t

(r) = 1.

If during the iteration t+ 1 the value i enters Q

t+1;k�i

nQ

t;k�i�1

, then after

the subsequent left-right step it must be pla
ed in Q

t+1;k�i

\ S

0

1

. Thus i 
an

never leave Q

t+1;k�i

on
e it have entered it, sin
e there are no 
omparators in

S

0

1

that 
an move i to the register with the greater level. By the Fa
t 5.33, the

value k�i 
annot go dire
tly in single step from Q

t;k�i�1

to any register outside

Q

t+1;k�i

. 2

70



Corollary 5.34 After 2k iterations of the third phase all the positive values in

the a
tive area are in the row y

0




� 1.

Proof. The 
orollary follows from the Claims 5.31 and 5.32. 2

We have shown that for w

0

� 6k the network P

l;w

0

moves in at most O(l +

w

0

+ k) iterations all the displa
ed ones of the k-disturbed input to the rows

y

0




�1 and y

0




and (by the symmetry of P

l;w

0

) all the displayed zeroes to the rows

y

0




and y

0




+ 1. Su
h a 
on�guration is at most 3w-dirty and 
an be sorted (by

Lemma 3.4) in the O(w) iterations of the last fourth phase.

For arbitrary n and k su
h that k < n=6, we 
an use the f0; : : : ; ng-restri
tion

of the network P

l;6k

, where l = minfm j 2

m

(m + 1 + 6k) � ng for sorting the

k-disturbed sequen
e of length n in O(l+ k) iterations. Note that l is O(log n),

so the 
onstru
tion ful�lls the properties stated.
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A The proof of Lemma 3.21

This appendix 
ontains the proof of Lemma 3.21 invented by Grzegorz Sta-


howiak.

Proof. Let x = (m)

k

(0)

l�k

, where 1 � k � l � 1. (The 
ases k = 0 and

k = l are trivial.) For t � 0 let x

t

= V

t

";m

(x). For t � 0 let b

t

2 f0; 1g

l

be

de�ned as follows: b

t

= V

t

0;1

((1)

k

(0)

l�k

). Note that for even t, b

t

is the output of

the t-th iteration of the l-odd-even transposition network applied to the ve
tor

(1)

k

(0)

l�k

, and b

t+1

is the result of the appli
ation of the �rst layer of the l-

odd-even transposition network to the ve
tor b

t

. By Lemma 3.3, for t > l, the

sequen
es b

t

are sorted.

Claim A.1 1. If t � l, then b

t

= (0)

l�k

(1)

k

.

2. If 0 < t < l, then b

t

= (0)

maxf0;l�k�(l�t)g

d(1)

maxf0;k�(l�t)g

where d is

some zero-one subsequen
e.

The �rst part of the 
laim follows from the fa
t that b

t

are sorted for t � l.

The se
ond part follows from the fa
t that b

l

is sorted and that in a single

layer of the odd-even transposition network the number of register 
ontaining

the leftmost one 
an be in
reased by at most one and the number of register


ontaining the rightmost zero 
an be de
reased by at most one. 2

For some s > 0, let 


1

; : : : ; 


s

� 0 be a sequen
e of 
oeÆ
ients su
h that

P

s

i=1




i

= 1. Then the ve
tor 


1

v

1

+ : : : + 


s

v

s

is a 
onvex 
ombination of the

ve
tors v

1

; : : : ; v

s

.

Claim A.2 Let s > 0, let 


1

; : : : ; 


s

� 0, su
h that

P

s

i=1




i

= 1, and let

v

1

; : : : ; v

s

2 [0;m℄

l

. Then

s

X

i=1




i

N

";m

(v

i

) � N

";m

(

s

X

i=1




i

v

i

)

and

s

X

i=1




i

P

";m

(v

i

) � P

";m

(

s

X

i=1




i

v

i

):

Proof. For even j or j = l, we have

hd

j

(N

";m

(

s

X

i=1




i

v

i

)) = hd

j

(

s

X

i=1




i

v

i

) = hd

j

(

s

X

i=1




i

N

";m

(v

i

)):

For odd j < l,

hd

j

(N

";m

(

s

X

i=1




i

v

i

)) = hd

j�1

(N

";m

(

s

X

i=1




i

v

i

)) + f

";m

(

s

X

i=1




i

(v

i;j

+ v

i;j+1

))
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and

hd

j

(

s

X

i=1




i

N

";m

(v

i

)) = hd

j�1

(

s

X

i=1




i

N

";m

(v

i

)) +

s

X

i=1




i

f

";m

(v

i;j

+ v

i;j+1

)

where v

i

= (v

i;1

; : : : ; v

i;l

). By the fa
t that f

";m

is a 
onvex fun
tion and that

hd

j�1

(N

";m

(

P

s

i=1




i

v

i

)) = hd

j�1

(

P

s

i=1




i

N

";m

(v

i

)) we have

hd

j

(N

";m

(

s

X

i=1




i

v

i

)) � hd

j

(

s

X

i=1




i

N

";m

(v

i

)):

(The proof for P

";m

is analogous). 2

Let t

0

be the minimal t su
h that b

t

is sorted. We assume that 0 < k < l,

and hen
e t

0

> 0. For 0 � t � t

0

let e

t

= mb

t

. For t > t

0

let e

t

= e

t

0

�(t�t

0

) mod 2

.

Claim A.3 If t � 0 is even, then

N

";m

(e

t

) = N

";m

(e

t+1

) = "e

t

+ (1� ")e

t+1

:

If t � 1 is odd, then

P

";m

(e

t

) = P

";m

(e

t+1

) = "e

t

+ (1 � ")e

t+1

:

Moreover e

0

� P

";m

(e

0

).

Proof. For ea
h t � 0 let e

t

= (e

t;1

; : : : ; e

t;l

). Let t + 1 be odd. To see that

N

";m

(e

t

) = N

";m

(e

t+1

) note that for odd i < l, e

t;i

+ e

t;i+1

= e

t+1;i

+ e

t+1;i+1

.

For ea
h odd i < l, x

i

= e

t;i

+ e

t;i+1

= e

t+1;i

+ e

t+1;i+1

2 f0;m; 2mg. Let

v = (v

1

; : : : ; v

l

) = N

";m

(e

t

). Then v

i

= f

";m

(x

i

) and v

i+1

= g

";m

(x

i

). If x

i

= 0

or x

i

= 2m, then

v

i

= x

i

=2 = "e

t;i

+ (1 � ")e

t+1;i

and

v

i+1

= x

i

=2 = "e

t;i+1

+ (1� ")e

t+1;i+1

:

If x

i

= m, then e

t;i

= m and e

t;i+1

= 0 (also for t � t

0

) and e

t+1;i

= 0 and

e

t+1;i+1

= m, hen
e

v

i

= "x

i

= "e

t;i

+ (1 � ")e

t+1;i

and

v

i+1

= (1� ")x

i

= "e

t;i+1

+ (1� ")e

t+1;i+1

:

If l is odd, then

v

l

= e

t;l

= e

t+1;l

= "e

t;l

+ (1� ")e

t+1;l

:

Thus for all i, 1 � i � l, we have v

i

= "e

t;i

+ (1� ")e

t+1;i

. (The proof for P

";m

is analogous.)

The e

0

� P

";m

(e

0

) follows from the fa
t that e

0

is the least ve
tor from

[0;m℄

l

in the relation � with the sum of 
oordinates equal km. 2
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Corollary A.4 Let s > 0. Let 


1

; : : : ; 


s

� 0, su
h that

P

s

i=1




i

= 1. Let




s+1

= 0. Let

P

s

i=0




i

e

i

� v. Then

bs=2


X

i=0

("(


2i

+ 


2i+1

)e

2i

+ (1� ")(


2i

+ 


2i+1

)e

2i+1

) � N

";m

(v) (6)

and




0

e

0

+

ds=2e

X

i=1

("(


2i�1

+ 


2i

)e

2i

+ (1 � ")(


2i�1

+ 


2i

)e

2i+1

) � P

";m

(v): (7)

Proof. Equation 6 follows from the fa
t that by the Claims A.3, A.2 and

by Lemma 3.17

bs=2


X

i=0

("(


2i

+ 


2i+1

)e

2i

+ (1 � ")(


2i

+ 


2i+1

)e

2i+1

) =

s

X

i=0




i

N

";m

(e

i

)

� N

";m

(

s

X

i=0




i

e

i

) � N

";m

(v):

Analogously we 
an prove the equation 7. 2

De�nition A.5 For t � 0 and i � 0 we de�ne the 
oeÆ
ients �

t;i

as follows:

� �

0;0

= 1 and for i � 1, �

0;i

= 0.

� if t is odd, t � 1, then

�

t;i

=

�

"(�

t�1;i

+ �

t�1;i+1

) if i is even, i � 0

(1� ")(�

t�1;i�1

+ �

t�1;i

) if i is odd, i � 1

� if t is even, t � 2, then

�

t;i

=

8

<

:

�

t�1;0

if i = 0

"(�

t�1;i

+ �

t�1;i+1

) if i is odd, i � 1

(1� ")(�

t�1;i�1

+ �

t�1;i

) if i is even, i � 2

Note that, for ea
h t � 0,

P

�

t;j

= 1 and hen
e 


t

=

P

�

t;j

>0

�

t;j

e

j

is a


onvex 
ombination of e

0

; : : : ; e

l

. By the Corollary A.4 it is easy to show by

indu
tion that:

Claim A.6 For ea
h t � 0,




t

� x

t

:

De�nition A.7 For t � 1, i � 0, let f

t;i

(the 
ow from i to i+ 1 in step t) be

de�ned as follows:

f

t;i

=

�

�

t�1;i

� �

t;i

if (t mod 2) 6= (i mod 2)

0 otherwise
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Claim A.8 Let t � 1. For all i � 0, f

t;i

� 0 and

� If 1 < i < l � 1, then f

t+1;i

= (1� ")f

t;i�1

+ "f

t;i+1

� f

t+1;1

= "f

t;2

Proof. The �rst equality 
an be shown as follows. If f

t+1;i

= 0, then

f

t;i�1

= 0 and f

t;i+1

= 0 and the equation follows. If f

t+1;i

6= 0, then f

t+1;i

=

�

t;i

� �

t+1;i

= �

t�1;i

+ f

t;i�1

� "(�

t�1;i

+ f

t;i�1

+ �

t�1;i+1

� f

t;i+1

) = (1 �

")�

t�1;i

� "�

t�1;i+1

+ (1 � ")f

t;i�1

+ "f

t;i+1

. By the De�nition A.5 we have

(1� ")�

t�1;i

= "�

t�1;i+1

and hen
e f

t+1;i

= (1� ")f

t;i�1

+ "f

t;i+1

. The se
ond

equality 
an be shown in a similar way. 2

De�nition A.9 For t � 1, for any integer i, let u

t;i

(upper bound on f

t;i

) be

de�ned as follows:

� u

1;0

= 1, and for i 6= 0, u

1;i

= 0, and

� for t > 1, u

t;i

= (1� ")u

t�1;i�1

+ "u

t�1;i+1

It is easy to verify the following 
laim.

Claim A.10 For t � 1, i � 0, f

t;i

� u

t;i

and for t � 1, �t + 1 � i � t � 1,

su
h that (t mod 2) 6= (i mod 2),

u

t;i

=

�

t� 1

(t� 1 + i)=2

�

"

(t�1�i)=2

(1� ")

(t�1+i)=2

:

2

If t � 1, and �t+ 1 � i, and i+ 2 � t� 1, then

u

t;i

u

t;i+2

=

�

t�1

(t�1+i)=2

�

�

t�1

(t�1+i)=2+1

�

�

"

1� "

=

t+ (i+ 1)

t� (i+ 1)

�

"

1� "

For d > 1 if t � dl and i < l, then

u

t;i

u

t;i+2

�

dl + l

dl � l

�

"

1� "

=

d + 1

d� 1

�

"

1� "

If d > 1=(1 � 2") > 1, then 
 =

d+1

d�1

�

"

1�"

< 1. Thus f

t;i

� u

t;i

� 


(l�i)=2

.

(Indeed, f

t;i

is either 0 or it is not greater than u

t;i

� 
u

t;i+2

and u

t;l

� 1 and

u

t;l+1

� 1.) On the other hand, if f

t;i

> 0, then

f

t;i

= �

t�1;i

� �

t;i

= �

t�1;i

� "(�

t�1;i

+ �

t�1;i+1

)

� (1� ")�

t�1;i

= (1� ")

2

(�

t�2;i�1

+ �

t�2;i

):

Hen
e �

t�2;i�1

+ �

t�2;i

�

1

(1�")

2




(l�i)=2

. Thus, for even t � dl + 2 we 
an

estimate the sum of the 
oeÆ
ients �

t�2;i

with i � l � r as follows:

l�r

X

i=0

�

t�2;i

=

X

0�i�l�r; f

t;i

>0

(�

t�2;i�1

+ �

t�2;i

) �

1

(1� ")

2

X

0�i�l�r; f

t;i

>0

p




(l�i)
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�

1

(1 � ")

2

X

i�l�r

p




(l�i)

�

1

(1 � ")

2

�

p




r

1�

p




We want to �nd r su
h, that

P

l�r

i=0

�

t�2;i

<

1

ml

. Let

r >

2

log(1=
)

�

log(ml) + log

�

1

(1� ")

2

(1�

p


)

��

:

Then (1=

p


)

r

>

ml

(1�")

2

(1�

p


)

and hen
e

1

(1� ")

2

�

p




r

1�

p




<

1

ml

:

If

ml �

1

(1� ")

2

(1�

p


)

;

then we 
an have any r su
h that

r >

4

log(1=
)

log(ml):

Note that for d = 4=(1� 2"),


 =

5� 2"

3 + 2"

�

"

1� "

and, for 0 < " <

1

3

,


 <

13

22

and hen
e

1

(1� ")

2

(1 �

p


)

<

9

4

�

1�

q

13

22

�
< 12:

Re
all that




t�2

=

X

�

t�2;i

>0

�

t�2;i

e

i

:

Let 


t�2;j

be the j-th 
oordinate of 


t�2

, where j < l� k� r. By Claim A.1, e

i

has only zeroes as the j-th 
oordinate if i > l � r. Thus




t�2;j

� m

l�r

X

i=0

�

t�2;i

< 1=l:

Hen
e hd

l�r

(


t�2

) < (l � r)=l < 1. Re
all that 


t�2

� x

t�2

. Thus we have

hd

l�r

(x

t�2

) < 1.

Lemma 3.21 follows if we take � = d � 4=(1� 2") and � �

4

log(1=
)

.
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